REAL TIME

OPERATING
SYSTEM

Reference Manual

093-000056—-06

+ Ordering No. 093-000056
~ ©Data General Corporation 1971, 1972, 1973, 1974, 1975

All Rights Reserved.
Printed in the United States of America
Rev. 06, February 1975

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers, The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval,

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

(RTOS 00) Original Release - June 1971
(RTOS 01 and 02) First Revision - August 1971
(RTOS 03) Second Revision - January 1972
(RTOS 04) Third Revision - August 1972
(RTOS 05) Fourth Revision - August 1973
(RTOS 3.00) Fifth Revision - March 1974
(RTOS 4. 00) Sixth Revision - February 1975

This revision of the Real Time Operating System Reference
Manual is a major revision. A vertical bar on the outer
margin of each page indicates substantially new, changed,
or deleted information.

S

i

CHAPTER 1

CHAPTER 2

TABLE OF CONTENTS

INTRODUCTION TORTOS

RTOS Task Concepts et e e e e e
Task States + v v v v i s s s e v e . .
Task Identification Numbers.

ooooooooo

ooooooooo

ooooooooo

Task Synchronization and Communication

System and Task Call Formats
Device Support Under RTOS e
Magnetic and Cassette Tape Files
Seven-and Nine Track Data Words . .

ooooooooo

ooooooooo

Cassette and Magnetic Tape File Organization .

Initializing and Releasing a Tape Drive

Referencing Files on Cassette and Magnetic Tape.

Writing Fileson Tape s e e .
Free FormatI/O et
Asynchronous Data Communications Multiplexer (QTY).. ...
Disk Files e e e eaaes et e et et
Disk File Orgamzatlon e e e e e e
RTOS/RDOS Compatibility e e e e -
Tape and Disk File Structures
Task and System Calls e e ae e
Channel/Task Specification
RTOS Program Development Under RDOS

Avoiding Global Symbol Conflicts Under RTOS . . .

Generating Console Interrupts.

Inter-revision Source Level Incompatibilities .

SYSTEM CALLS e et e et e e e, .

File and Input/Output Commands. et e e e e
Open a File or Device ((OPEN) e
Get the Number of a Free Channel (. GCHN).

Open a Device for Appending (.APPEND) “ e

Close a File or Device (. CLOSE).
Close all Files and Devices (. RESET)

Initialize a Magnetic Tape Unit or Cassette (. INIT)
Open a Cassette or Magnetic Unit for Free Format

IO ((MTOPD)
Release a Magnetic Tape Unit or Cassette (.RLSE).

Read a Series of Disk Blocks (. RDB)
Reada Line ((RDL) . ..,........
Read Sequential ((RDS) .,

Use of the Card Reader in .RDL and . RDS

Commands .

s e+ 2 s s &«

okl ot ek
[T T T T
GO DO

[S SR
[]
o o CO NI N O Lo W

[S
| I §
[er—
w o

1-13
1-14
1-14
1-15
1-15
1-15
1-16
1-16
1-17
1-17
1-17

CHAPTER 2 - SYSTEM CALLS (Continued)

S

Write a Series of Disk Blocks (WRB). e .. 2-16
Write a Line (. WRL) . .. it it it i s venennn 2-16
Write Sequential (WRS) e e e e 2-17
Free Format Tape I/O ((MTDIO) . . v v v v v v v v 2-18
Teletypewriter and Video Display Commands e 2-22
Geta Character (LGCHAR)L + v v v v e v v v v s 0 a v s 2-22
Put 2 Character ((PCHAR) .« v s v e v v v v v v s v o 2-22
Wait for a Keyboard Character (. WCHAR) 2-23
Memory Size Commandso 2-23
Determine Available Memory ((MEM). 2-24
Allocate Memory by Changing NMAX ((MEMI) ... 2-24
System Return Commands ., ..., oo c e e . 2-25
System Return ((RTN)o vvvnnoene s 2-25
System Error Return ((ERTN) 2-26
Clock and Calendar CommandsS ., ... s s e v v oo v oo saosos 2-26
Delay the Execution of a Task (DELAY) . ..o e 2-26
Get Today's Date (\GDAY). . v v v v v v v v v oo e enn 2-27
Set Today's Date (.SDAY) . ..o v v v enveenen 2-27
Get the Time of Day (.GTOD). e e s e e e 2-28
Set the Time of Day (.STOD) v oo .. 2-28
Examine the System Real Time Clock (.GHRZ) ... 2-28
Define a User Clock (.DUCLK) e e e e 2-29
Exit from a User Clock Routine (UCEX) 2-30
Remove a User Clock (RUCLK). 2-30
CHAPTER 3 - TASK CALLS ... i it es i s v eaca s e .. 3-1
Multitasking Concepts SUMMALY « « ¢ o v s o oo oo v - 3-

1
Aborta Task ((ABORT) e, 34
Kill All Tasks of a Specified Priority (.AKILL) . .. 3-4
Ready All Tasks of a Specified Priority (.ARDY) .. 3-5
Suspend All Tasks of a Given Priority (LASUSP). .. 3-5
Dequeue A Core-resident or Overlay Task

(.DQTSK) 3-6
Get a Task's Status ((IDST) . « v v v v v et v o s v 3-6
Transmit a Message from a User Interrupt Service
Routine ((IXMT) 3-7
Define a Kill-Processing Address (.KILAD) 3-8
Delete a Calling Task (.KILL) 3-9
Change the Priority of a Task ((PRI) « v v e v v v v 3-9
Queue a Core-resident Task ((QTSK) v ve v v cvn 3-9
Receive a Message (\REC) . . v v v v v v eeee s 3-11
Suspend a Task (.SUSP)t iueenenn 3-11
Create a Task (. TASK) «« ¢ oo v o ce e 3-12

il

CHAPTER 3 - TASK CALLS (Continued)

Kill a Task Specified by I. D. Number (.TIDK) . . .
Change the Priority of a Task Specified by I.D.
Number (, TIDP)
Ready a Task Specified by 1. D. Number (. TIDR). .
Suspend a Task Specified by 1. D. Number (. TiDS}
Transmit a Message (. XMT), and Wait (. XMTW) .
Locking a Process via the . XMT/.REC Mechamsm

CHAPTER 4 - USER INTERRUPTS AND POWER FAIL/AUTO RESTART
PROCEDURES. ...

Servicing User Interrupts
Identifying User Interrupt Devices (. IDE F)y ««vo .
Exit from a User Interrupt Routine (. UIEX). . .
Modifying the Current Interrupt Mask (. SMSK).
Remove User Interrupt Servicing Program (. IRMV)

Power Fail/Auto Restart Procedures -+ + .« « . . et
Exit from a Power Fail Service Routine (.UPEX). .
High Priority User INteTrupt SEIVICE « o v o v v v v v s v v vw .
CHAPTER 5 - MULTIPLE PROCESSOR SYSTEMS. « « « « e et ea
Multiple Processor Programming ettt e i
Data Transmissions s e
Get the Current CPU's MCA Number (. GV{CA) ..
Multiprocessor System ILIUStTation « « v v v v v ve v s, ..
CHAPTER 6 - SYSTEM ORGANIZATION + v v v veeeee e ennn .o
RTOS Page Zero v v v v v v v v vinnnn..
User Status Table (UST) v v v vt vt v e v e oeun.
Task Control Block (TCB) POl + v v vv vs vsun...
User File Pointers Table (.UFPT) e s
Device File Tables « ¢ ¢ o v v 0o v v u . s st e s e e
High Priority Interrupt Table (.HINT): « v « v v v .. .
Interrupt Table (\ITBL) + o v ¢ « v .. et e s ee e
Standard Device Name Table (.CHTB) .«
APPENDIX A - RTOS COMMAND SUMMARY « + v v v v .. e ..

APPENDIX B - GENERATING AND LOADING AN RTOS SYSTEM « « « v+ .

iii

3-12

3-13
3-13
3-14
3-14
3-15

[
i
-

i

1
Ut U s G0 W N DN =

i o S S TN N
1

APPENDIX B - GENERATING AND LOADING AN RTOS SYSTEM (Continued)

Definition of Terms .« .« .+« .. e e e e .
Preparation for System Generation. Cee e s
System Generation . s v v e oo o e o e e .o

Loading RTOSGEN in a SOS or Stand-alone
Environment . « « « «
Loading RTOSGEN in an RDOS Environment ...
Producing the RTOS Module .« .. cveeeve o
Loading and Running a Program in a Stand-Alone
Environment . .
Performing a Stand-Alone or SOS Relocatable
Load...... oo o
Executing a Stand-Alone Program« .0 ..
Loading and Running a Program in an RDOS Environment. .
Loading an RTOS Program under RDOS.
Executing an RTOS Program with HIPBOOT
Executing an RTOS Program with TBOOT, CBOOT
or MCABOOT . .
Executing an RTOS Program via Paper Tape which was

Produced under RDOS . ¢« ¢ v v o v v
Executing an RTOS Program with the SOS Core Image
Loader/WTiteT « e o « o oo oo o o v e
APPENDIX C - RTOS PARAMETERS v ¢ e e v v v v e e oo vv e e e e e e

APPENDIX D - RTOS ASSEMBLY LANGUAGE AND FORTRAN IV
PROGRAMMING-. -

Assembly Language Illustration. « . « « « o« - ..
Real Time FORTRAN IV Programming « « « « « ¢ « ¢

APPENDIX E - RTOS INTERREVISION INCOMPATIBILITIES « ¢ v v v v v v e o

iv

Sy
food ok

i

WC:IJO“J
W W W

B-13
B-14
B-15
B-15
B-16

B-18

B-20

CHAPTER 1

INTRODUCTION TO RTOS

The Real Time Operating System (RTOS) for the DGC family computers consists
primarily of a small, general purpose multi-task monitor designed to control a
wide variety of real time input/output devices. RTOS is entirely core-resident,
highly modular and largely reentrant, and allows for the straightforward addition
of special device handlers. Moreover, RTOS, revision 4.00 is a compatible subset
of RDOS revision 4.00, Data General's Real Time Disk Operating System.

User programs are relieved from the details of I/O timing, data buffering,
priority handling, and task scheduling. In addition, users are provided with a
parallel processing capability plus inter -task communication and synchronization
facilities. Communication with the RTOS monitor takes place through a small
set of RTOS system and task calls.

A task is the basic logical unit controlled by RTOS. Tasks are created by means of
one of the RTOS task calls, and having been created, a task may be terminated
at any time. A large number of common processing situations lend themselves
admirably to this sort of operational control philosophy. Examples of these
processing situations include the reading or writing of a block of data while simul-
taneously performing arithmetic computations, listening for input from several
devices at the same time, shared device use by multiple tasks, sophisticated
communications problems, etc.

RTOS TASK CONCEPTS

A task is a logically complete, asynchronous locus of control through a program.
A task demands use of system resources (including CPU control). Many tasks
may be assigned to operate asynchronously in a single reentrant sequence of
instructions, and each task may be assigned a unique priority and identification

number,

Due to the serial nature of a computer, tasks which appear to be executing their
operations in parallel are in actuality executing these operations in short, serial
segments. It is necessary then for RTOS to maintain certain status information
(primarily active registers) concerning all tasks which are not currently in control
of the Central Processing Unit (CPU),

This information is retained in an information structure called the Task Control

Block (TCB). The maximum number of TCBs is defined at the time of system
generation.

1-1

Task States

Tasks may exist in any of four states. Tasks are either ready to perform their
functions, they are actually in control of the CPU and are executing their assigned
instruction paths, they are suspended and temporarily unable to receive CPU
control, or they are dormant, having no priority and no chance of gaining CPU
control until activated by a . TASK or .QTSK command. The Task Scheduler always
gives CPU control to the highest priority task that is ready. .

Suspended tasks are tasks which were once ready. A task may become suspended
for one or more of the following reasons:

It has been suspended by .SUSP, . ASUSP, or .TIDS.

It has suspended itself for a specified period by . DELAY.
It is waiting for a message from another task, .REC.

It has issued a message-and-wait call, . XMTW,

. It is awaiting the completion of a . SYSTM call.

[B I S R

Just as a number of different events may suspend a ready task, several events can
cause a suspended task to be readied:

1. The completion of a . SYSTM call (such as a request for 1/0 or the
expiration of a time delay).

2. The posting of a message for a suspended task awaiting its receipt,
or the awaited receipt of a transmitted message.

3. The readying of a task by . ARDY or .TIDR task calls.

If a task is suspended by both a task suspend call and by some other event, the
call must be readied both by an . ARDY (or . TIDR) call and by whatever other

event is required to ready the task.

Suspended and ready tasks are each connected in queues. Tasks may be deleted
from either the ready or the suspended queues, either separately (. ABORT or

. TIDK) or as a priority class (. AKILL)., Tasks which have been deleted add their
empty TCBs to an inactive chain of free TCBs. When a task is initiated (. TASK), a
TCB is taken from the free chain, the state of the calling task is saved in its own
TCB, and both tasks are entered into the ready queue as ready tasks. The .TASK
command must be used to initiate a multitask environment.

If all tasks are killed, the effect is to place the entire system in the idle state

and to close all channels, with control passing to the task scheduler. The system
remains capable of servicing interrupts.

1-2

e

Task Identification Numbers

When a task is created, it may be created both with a unique identification number
(I.D.) from 1 to 377 and at a specified priority level (from 0 to 377). The
identification number allows tasks to be readied, suspended, or killed on a
selective basis. If unique 1. D, 's are not desired, tasks may &ll be created with
[.D.’s of 0. Tasks may exist at priority levels of 0 (the highest) through 3’7‘?’8
(the lowest priority). Moreover, several or all tasks may exist at the same
priority level. The task scheduler always allocates CPU control to the highest
priority ready task; ready tasks within the same priority level receive CPU control
on a round-robin basis.

Task Synchronization and Communication

RTOS permits tasks to communicate with one another by sending and receiving
one-word non-zero messages. A one-word message is sent to a task in an agreed-
upon location in user address space. User address space is understood to include
all locations from address 16 through NMAX inclusively.

The task sending a message may either return to the Task Scheduler immediately

(. XMT) or it may wait (. XMTW) and place itself in the suspended state until the
receiving task has issued a receive request (. REC) and has received the message.
Receipt of the message includes the resetting of the contents of the message address
to all zeroes. Upon receipt of the message, the recipient reverts to the ready
state.

System and Task Call Formats

Calls to the RTOS monitor can be separated into two categories: system calls
and task calls, System calls generally perform system [/O, Task calls perform
user task management functions,

System command words and the mnemonic , SYSTM that must precede each command
word are recognized as legal mnemorics by both the RDOS and stand-alone extended
assemblers. Appearance of the mnemonic .SYSTM in a program results in the
assembling of a JSR @ 17 instruction. The specific system command word is assem-
bled as the word following the mnemonic . SYSTM.

Once system action is complete and the task receives CPU control in priority fashion,
normal return is made to the second instruction after the system command word, If
an exceptional condition is detected, return is made to the first instruction following
the system command word.

System and Task Call Formats (Continued)

The general form of a system call description is:

ACIn - required input to the call

.SYSTM

command

error return (error code in AC2)

normal return (all AC's except AC3 are restored unless output
is returned via accumulator)

AC - output from the call
n

There are 2 basic command word formats:
command n and command

where n is a number from 0 to 76, representing an I/O channel number. The
maximum number of channels, like the maximum number of tasks, is defined at
the time of system generation. Any system command requiring a channel number
n need not specify this number in the command word. Instead, by specifying n

to be octal 77, the system will use the number passed in AC2 as the channel
number.

When no I/0 is needed in command execution, the command word appears alone in
the instruction. If the command requires arguments, these are passed in the
accumulators.

AC2 is used when an exceptional return is made to return a numeric error code.
Error codes are listed by number in the RTOS parameter listing, and the applicable
codes are listed for each command.

e

System and Task Call Formats (Continued)

Status of the accumulators upon return from the system (.SYSTM or task call) is
as follows. If the system returns no information as a result of the call, the carry
and all accumulators except AC3 will be preserved. AC2 is used when an excep-
tional return is made to return a numeric error code. Error codes are listed

in Appendix A.

AC3 is destroyed by a . SYSTM or task call (as it is by the use of "JSR™). On
return from NOVA®* RTOS systems however, AC3 is loaded with the contents of
memory location 000016, This location is defined as a permanent symbol by the
assemblers and has the name USP (User Stack Pointer). A convenient method of
saving AC3 in such systems is to store it in USP before issuing the .SYSTM ox
task call. The system will load AC3 with the contents of USP upon return from
the call in NOVA RTOS systems.

Single task ECLIPSE™* RTOS programs loaded with TMIN also load USP into

AC3. Programs loaded with BTMIN, however, load FP (the frame pointer) into
AC3; all multitask programs run on ECLIPSE systems do this also. BTMIN must
be loaded explicitly before the RTOS system libraries are scanned in order for
BTMIN--instead of TMIN--to be included within a single task ECLIPSE program.

In any case, the contents of USP will be restored to its former state in all systems.

Users with programs which assume that USP is contained in AC3 after system and
task calls can run these same programs when the system loads FP, not USP, into
AC3. This can be accomplished by Creating a parameter file with the entry
".DUSR USP = 41". This file must be scanned at assembly time after, not before,
the regular user parameter file, PARU.

Users of task calls are cautioned to reference all task call commands whose
opexrations are required within a program by their call names in an . EXTN
statement in that program. Only those calls which are so referenced will have the
appropriate task call processing modules loaded by the relocatable loader.
The general form of a task call in a program is:
AC - required input to the call
n

command

error return (error code in AC2)

normal return (all AC's except AC3 are restored unless output

is returned via accumulators)

ACn - output from the call

"NOVA is a registered trademark, and ECLIPSE is a trademark of Data General
Corporation, Southboro, Massachusetts.

1-5

System and Task Call Formats (Continued)

The significant differences between a .SYSTM call and a task call are as follows:

1. Task calls are not preceded by the . SYSTM mnemonic.

2. Not all task calls have error returns. Those which de not
have an error return do not reserve an error return location.
All system calls reserve error return locations even if there
is no error return possible.

DEVICE SUPPORT UNDER RTOS

I/O devices are given special reserved names which often begin with the character
$. The following list gives the names of devices supported under RTOS and their

reserved names:

$CDR
$CDR1
CTn
DKO
DPn
SLPT
$LPTI1
MCAR
MCAT
MTn

$SPLT
SPLT1
$PTP
$PTP1
$PTR
$PTR1
QTY
$TTI
$TTIL
$TTI2
$TTO
$TTOL
$TTO2

Card reader.

Second card reader.

Data General cassette unit n (n can be from 0 to 7).
Data General fixed head NOVADISC® *,

Moving head disk, unit 1 (n can be from 0 to 3).

80- or 132 ~column line printer.

Second line printer, 80 or 132 columns.
Multiprocessor Communications Adapter Receiver.
Multiprocessor Communications Adapter Transmitter.
7- or 9-track magnetic tape transport (n can be from
0to 7).

Incremental plotter.

Second incremental plotter.

Paper tape punch.

Second paper tape punch.

High-speed paper tape reader.

Second paper tape reader.

4060 asynchronous data communications multiplexer.
Teletype®**or video display terminal keyboard. *#*
Second Teletype or display terminal keyboard. #**
Third Teletype or display terminal keyboard. =
Teletype printer or display terminal screen.

Second printer or display terminal screen.

Third printer or display terminal screen.

*NOVADISC is a registered trademark of Data General Corporation, Southboro,

Massachusetts,

**Teletype is a registered trademark of Teletype Corporation, Skokie, Illinois.
*#*1f the Teletype reader is turned on for line reads, data read will be echoed ona

the Teletype printer.

1-6

%, J
i

i

MAGNETIC AND CASSETTE TAPE FILES

RTOS provides two means for accessing data on magnetic tape and cassettes: Tape
file I/O and direct or free format 1/0.

Tape file 1/0 is implemented in both line and sequential 1/O modes. Tape file

1/0 is buffered by the system, whereas direct I/0O is unbuffered by the system,
RTOS will support up to 16 magnetic and 16 cassette tape drives. Magnetic tape
units can be in any combination of 7- and 9-track units, with reading and writing

at any density supported by the controller for direct 1/0; other forms of 1/0 require
high density.

If the controller detects a parity error during reading, the system will attempt
to reread the data ten times before issuing error code ERFIL, 'file data error. "
If an error is detected after writing, the system will attempt, up to 10 times, to
backspace, erase, and re-write. If the re-write is unsuccessful after the tenth
time, then an error will be signaled.

Seven-and Nine Track Data Words

Data recorded on 7-track units is necessarily encoded. Every data word, written
on 7-track units in tape file 1/0, is encoded as two data words, four successive
frames. Data words written to 7 -track units in free format I/0 is encoded as two
successive frames. Data words output to 9-track units, under both file I/O and
free format I/0, is written as two successive eight-bit bytes. Data encoding is
accomplished on 7 and 9-track units in the following manner.

Original Data Word [0 |112]3[475[6] 7] 8[9]10[11] 12] 13]14] 13

7-track encoding 9-track encoding
parity data parity data
framel x xx 0 1 2 3 x 01 2 3 4 5 6 7
. frame2 x xx 4 5 6 7 Xx 8 9 1011121314 15
File 1/0 frame 3 x x x 8 9 10 11
frame4 x x x 12 13 14 15

[
w
b
[¥2)
(@)
~.]

<
O | b
fa—
)
o
f—
[
o
[y
w
-
Wb
ot
"2

MR
WO

Free Formfframe 1 234 5 6 7
1/0 {framez x 101112 13 14 15

1-7

Cassette and Magnetic Tape File Organization

Cassette and magnetic tape files have the same format. Data is written and read
in fixed length blocks of 257 16-bit words. Data files are variable in length, each
one containing as many fixed length blocks as is required. The first 255 10 words
of each block are data proper, and the last two words each contain the file number,
The following illustration shows the structure of a data block:

Data words 253 words
File number 1 word
File number 1 word

After the first file, an end-of-file (EOF) mark is written. EOF marks separate
each succeeding file, and two EOF marks are written after the last file. Files

are written in consecutive order, starting with file number O and extending through
file number 99.

Initializing and Releasing a Tape Drive

Before any tape files on a tape drive can be accessed the drive must be initialized
via the .INIT system call. Initializing a tape drive causes the tape on that drive

to be rewound. Full initialization causes the tape to be rewound and two EOFs to
be written (effectively erasing all files from the tape). In both cases, the tape

file pointer maintained by RTOS is reset to 0. A full initialization of all new (blank)
tapes should be performed before using them.

Referencing Files on Cassette and Magnetic Tape

Files are placed on tape in numeric order, beginning with file number 0. Up to
100 files may be placed on any given tape. The last permissible file is file number

99,

A given file is referenced in a command by a tape global specifier followed by a
colon and file number. Global specifiers for the cassette and magnetic tape are:

MTn:m Magnetic tape unit n attached to the first controller,
a where n is from 0-7 and has no leading zero, with file
number m from 0-99.

1-8

Referencing Files on Cassette and Magnetic Tape (Continued)

MTIn:m Magnetic tape unit n attached to the second controller,
where n is from 0-7 and has no leading zero, with file
number m from 0-99.

CTn:m Cassette unit n attached to the first controller, where
n is from 0-7 and has no leading zero, with file
number m from 0-99.

CTln:m Cassette unit n attached to the second controller, where
n is from 0-7 and has no leading zero, with file number
m from 0-99.

Either a one-digit or a two-digit number may be used to reference the first ten
file numbers. Thus to reference file number 8 on cassette or magnetic tape unit
2 attached to the first controller, the following global specifiers would be used:

MT2:08 or MT2:8 CT2:08 or CT2:8

Both the tape global specifier and the file number must be given. Violation of this
rule will cause the system to return error code ERFNM, "illegal file name. "

Some examples of references to files on tape are:

LDA 0, MTAPE ;GET UNIT NAME

SUB 1,1 ;PARTIAL INITIALIZATION
. SYSTM
LINIT ;INITIALIZE UNIT MTO
JMP ERROR ;RECOVER FROM SYSTEM ERROR CONDITION
SUB 1,1 ;PRESERVE DEVICE CHARACTERISTICS
LDA 0, FILNM ;GET TAPE UNIT NAME
.SYSTM
.OPEN 1 ;OPEN MTO FILE 1 ON CHANNEL 1
JMP ERROR ;ERROR UPON SYSTEM CALL
WRITE: LDA 0, BUF ;GET BUFFER POINTER
.SYSTM
.WRL 1 ;WRITE LINE TO FILE 1 OF MTO
JMP ERROR ;RECOVER FROM SYSTEM ERROR CONDITION

(see next page)

1-9

Referencing Files on Cassette and Magnetic Tape (Continued)

FILENM: . *2+1

.TXT *MTO:1*
MTAPE: L %241

.TXT *MTO*
BUF: L F2+41

.BLK 132.

. END

Writing Files on Tape

Files must be placed on cassette and magnetic tape in numeric order. For example,
suppose the user transfers a file, FILEO, to tape unit 3 which has just been
initialized. FILEO will be the first file on the tape. The tape on drive 0 will now
contain the following:

00— - — — — — — First file, containing the con-
~~~~~~~~ tents of FILEO.

e — — o—— —— —— S st

Once a file is written, the file
number of the next file is
. assigned. File 1 is a null file.

An attempt to place a new file on this tape at file position 2 where only FILEO has
been written on the tape, will result in error ERDLE being signaled, "file does
not exist'’.

It is possible to overwrite a magnetic tape file. For example, assume a tape on
drive O contains four files:

1-10




Writing Files on Tape (Continued)

——— ——— S——— o—— i svommmt swirnis | meren.

e T S —

s ——— — s—— o i e e

the tape beginning at the file 1 position.
subsequent files on tape are lost.

Null file.

A command to write FILEO to file 1 will cause the contents of that file to overwrite
When a tape is written in this manner, all
In the example, the tape will contain:

Original file zero

eof
FILE O

eof
eof

Null file or inaccessible
data

Users are cautioned to do either an .INIT or .RLSE of the tape transport before
removing either a cassette or magnetic tape reel. Issuance of these commands
resets the system tape file pointer to 0 so that accessing of rewound tape files can
be accomplished correctly, and reassigns the default global specifier name as

required.




Writing Files on Tape (Continued)

Users must also note the implications of the logical end~of -tape mark, double

EOFs, employed by RTOS.

If, by mistake, an attempt is made to access serially

two files beyond the logical end-of-tape mark, the tape transport will be placed
in a runaway condition. This error is illustrated by the following command

sequence.

Full .INIT of MTO

.OPEN and .RDL of
MTO:0

.OPEN and . RDL of
MTO:2

User places a null file 0 on tape, terminated by
the logical end-of-tape mark, EOF EOF,

The system reads null data found between the
double EOF characters, and stops at the second
EOF.

The system transport is placed in a runaway
condition as the system searches in vain for an
EOF mark.

A corollary error occurs when an attempt is made to write a null file between data
files on tape. The following command sequence illustrates this problem:

. OPEN MT0:0, . WRL file A

.OPEN MTO:1, . WRL file B

.OPEN MT0:2, . WRL file A

. RLSE and .INIT MTO

Data file A is written to file O.
Null file B is written to file 1.
Data file A is written to file 2.

Transport is released and initialized to reset
the tape file pointer to O.

The file arrangement produced on MTO looks like the following:

file A 0

eof

null file eof

file A

eof

eof

1-12




Writing Files on Tape (Continued)

An attempt to read file 2 will cause error ERDLE, "file does not exist, "' to be
signaled since the system interprets the double EOF mark to be a logical end-of-
tape marker.

FREE FORMAT 1/0

Data is read and written on magnetic and cassette tape in free format. Data
records may be of varying length, containing from 2 to 4096 16-bit words each,
and with 1 or more records per file. Each tape reel can contain as many files as
the reel size will permit, although only the first 100 10 files can be positioned
directly when a file is opened.

Before any free format I/O can occur on a device, that device must first be initialized
and then opened for this type of I/O. The system call , MTOPD is issued to onen
either mag tape or cassettes for free format I/O. When a tape unit is opened, it is
positioned to a specified file, and the unit is associated with an RTOS channel. Thus,
even though the unit has positioned a tape reel to a specific file, all files on the

tape can then be accessed via space forward/space backward commands, and all
records within each file can be similarly accessed.

ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXER (QTY)

The type 4060 asynchronous data communications multiplexor is another device
supported by RTOS. RTOS assigns the system mnemonic QTY to this device.

The QTY can accommodate from 1 to 64 full or half duplex lines, in either half or
full duplex operation.

Each multiplexed line of the QTY corresponds to a file name of the form

QTY 3
where xx is a multiplexor line number in the range 0-64 decimal. Input/output
operations are performed on each line by RTOS line or sequential read and

write commands,

Each single QTY line may be opened on a single RTOS channel only. No more than
one read or one write request can be outstanding on any one line.

13



ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXER (QTY) Continued)

RTOS provides a facility for monitoring line activity on all unopened QTY lines.
If line number 64, QTY:64, is opened and either a read line or read sequential
operation is attempted, the task issuing this call will be suspended until such
time as an unopened line receives an interrupt request. When this occurs, the
normal return of the read sequential or read line call will be taken, and AC2
will contain the following data word:

[1]0| Line # [Char. ]
012 78 15

Thus this data word describes the line providing the character, and contains the
character itself in its right byte.

If two unopened lines receive an interrupt, only the first one to receive the
interrupt will be reported. There will be no report of other unopened interrupting
lines occurring before the next read line or read sequential on QTY:64 is issued.

DISK FILES

RTOS extends support to both fixed and moving head disk units. RTOS supports
a fixed head NOVADISC controller with up to eight logical units of 128K, 256K,
512K or 756K storage words; total fixed head storage percontroller is from 131
thousand to 2 million words. Up to four moving head disk devices (disk pack or
cartridge type) can also be included in any system, with from 2 to 20 surfaces
per unit; maximum total moving head disk storage is 49.2 million words.

Disk files are defined at the time of system generation. At this time, file sizes
are specified and names are assigned to each file. File names consist of from

4 to 6 ASCII characters followed by a trailing null. Allowable ASCII characters in
the file name are all upper case alphabetic characters and numerals O through 9.
A file must be opened (i.e., associated with an RTOS channel) before it can be

accessed.

Disk File Organization

Disk files in RTOS may be organized contiguously only. Contiguously organized
files consist of a fixed number of one or more disk blocks located at an unbroken
series of disk block addresses. These files can be neither expanded nor reduced
in size. Since the data blocks are at sequential logical block addresses, all that
is needed to access a block within a contiguous file is the address of the first
block and the relative block number within the file.

1-14




Disk File Organization (Continued)

File ABCD
- Block Address N Block Address N+1 Block Address N+2
all 256
words are
utilized
for data . . .
storage . . .
~ Relative Block No. 0 Relative Block No. 1 Relative Block No. 2

Contiguously organized files have the advantage of allowing quick access to their data
blocks, with all disk storage being used for data.

RTOS/RDOS COMPATIBILITY

The design intent of RTOS is to make this operating system a compatible subset

of RDOS, the DGC Real Time Disk Operating System. Accordingly, all file
structures, task concepts, system and task calls, and other features discussed for
RTOS may be tested and run on an RDOS system. RDOS features omitted from
RTOS were omitted because they could not be applied in RTOS, given the constraints
of a quick responding core-resident-only operating system.

Tape and Disk File Structures

Cassette and magnetic tape file structures under RTOS are identical to those pro-
vided by free format I/O under RDOS.

Disk files in RTOS must be organized contiguously; sequentially and randomly
organized disk files are available only under RDOS. Names are assigned to RTOS
disk files at RTOSGEN time. Allowable ASCII characters in RTOS file names are
all upper case alphabetics and numerals 0 through 9. Unlike RDOS, however, disk
file names must be 4 to 6 characters in length, may not include the $ character,
and can have no file name extensions; file names defined at RTOSGEN time cannot
be changed. Disk files must be opened before they may be accessed.

Task and System Calls

Unless otherwise specified, all RTOS system and task calls operate as they do under
RDOS. Any attempt to reference a task call under RTOS which is not found in its
library will cause an unresolved external to be reported by the loader.

1-15



Task and System Calls (Continued)

In most cases, an attempt to execute an RDOS system call which is not implemented
in RTOS results in an error return being taken with error code 2, ERICM (illegal
system command), reported in AC2. However, some calls are treated as no-ops
by RTOS to achieve downward compatibility (from RDOS to RTOS). The following
list names all of these calls which cause control to go directly to the normal return
with no further action:

. SYSI SOS-compatible call.
. SPKL Kill spooling.

. SPDA Disable spooling.

. SPEA Enable spooling.

Note that these calls will not operate correctly under RTOS in the presence of

error conditions. Thus, for example, an attempt to delete a non-existent file would
take the error return for .DELET under RDOS, but would take this call's normal
return under RTOS.

Channel /Task Specification

The number of channels and tasks in a program run under RTOS is defined at
RTOSGEN time. RTOS programs being tested under RDOS may specify channels
and tasks by means of the RLDR local switches /C and /K, or by the .COMM TASK
(or CHANTASK) statements.

RTOS Program Development Under RDOS

Bearing in mind the above restrictions, RTOS program development under an RDOS
system is convenient., RTOS programs are edited, assembled, loaded and debugged
under RDOS, and when they are considered to be error free they are reloaded with
an RTOS module (produced by RTOS SYSGEN) and the RTOS library, using the RDOS
RLDR command with the /C global switch. This load procedure creates a version of
the program (called a save file) which can be run under RTOS.

Having created this save file, one of several bootstrap procedures are followed to
execute the program, depending upon whether the RTOS program is to be run on the
system which is currently executing under RDOS or whether it is to be run under
another system, with or without disk, which is not running under RDOS.

1-16




RTOS Program Development Under RDOS (Continued)

Complete details describing the use of the RDOS RLDR command, operation of
TBOOT, CBOOT, HIPBOOT, and procedures for relocatable loading of an RTOS
program module on a stand-alone system are outlined in Appendix B of this manual.

Avoiding Global Symbol Conflicts under RTOS

In order to minimize the incidence of global symbol conflicts between user pro-
grams and RTOS subprograms, RTOS generally follows the convention of using a dot
as the first character in each symbol. Thus user-defined global symbols should
always avoid the use of a dot as the first character in a symbol.

This rule has several exceptions which users should be aware of, i.e., several
global symbols in RTOS are not preceded by dots. These undotted global symbols
are as follows: PWRIS, RTCIS, DCT names (summarized at the end of system
oenerations), entries in the buffer package (BFPKG), entries in Fortran libraries
runt. oo ond RTOS FMT. LB, and user high priority interrupt handlers.

Generating Console Interrupts

RTOS does not permit the generation of console interrupts (CTRL A, CTRL C, or
CTRL F) which are available under RDOS. Nonetheless, RTOS does provide a
facility which resembles an RDOS keyboard interrupt. This facility is the keyboard
character wait command, .WCHAR . This command, discussed fully in Chapter 2.
activates logic within RTOS such that when a user-specified character is received
from any console keyboard, control will branch to a user-specified routine for
appropriate processing.

Luter-revision Source Level Incompatibilities

Users of RTOS 3. 00 who wish to be upgraded to RTOS 4. 00, the current revision,

should be aware of certain sour ce level incompatibilities between the two revisions.
A summary of these considerations is given in Appendix E.

Rk %k

1-17



CHAPTER 2

SYSTEM CALLS

The following page contains an alphabetized List of all RTOS system command word
mnemonics.

All system calls except user interrupt calls will be discussed in this chapter, with
calls being grouped in the following sections:

File and Input/Output Commands
Teletvpewriter /Video Display Commands
Memory Size Commands

System Return Commands

Clock and Calendar Commands

FILE AND INPUT/OUTPUT COMMANDS

All 1/0 is handled by system I/O commands. These commands require a channel
number from 0 to 77 to be given in the argument field of the command word as
discussed in Chapter 1. The number of channels available is determined by the
user when the RTOS module is generated by the user (see Appendix B).

The user may also define a number of fixed length files when the RTOS module

is generated, and may assign alphanumeric names to these files. Such files

are organized contiguously, and are composed of a fixed number of disk blocks
which are located at an unbroken series of physical block addresses. These

files can neither be expanded nor reduced in size. Since the data blocks are in
sequence, all that is needed to access a block within a contiguous file is the

name of the file (indicating to RTOS the address of the first block) and the relative
block number within the file. Since no time is required for reading a file index,
disk files under RTOS can be accessed rapidly.

2-1



. APPEND
.CLOSE
.DELAY
.DUCLK
.ERTN
.GCHAR
.GCHN
.GDAY
.GHRZ
.GMCA
.GTOD
.IDEF
JINIT

. IRMV
.MEM
.MEMI
.MTDIO
.MTOPD
. OPEN

. PCHAR
.RDB
.RDL
.RDS
.RESET
.RLSE
.RTN
.RUCLK
.SDAY
.STOD
.WCHAR
.WRB
.WRL

. WRS

System Call List

Append to a device.

Close a file or device.

Suspend a task for a specific interval of time.

Define a user clock.

Idle the system abnormally.

Get a character.

Get a free channel number.

Get today's date.

Get the real time clock frequency.

Get the current CPU's MCA number.

Get the time of day.

Identify a user interrupt device.

Initialize a magnetic tape or cassette.

Remove a user interrupt device.

Determine available memory.

Change NMAX.

Perform free format I/O on magnetic tape or cassette.
Open a magnetic tape or cassette for free format I/0.

Open a file or device other than the magnetic tape or cassette.

Output a character to the teletypewriter.
Read a disk block.

Read a line.

Read sequential bytes.

Close all devices and files.

Release a magnetic tape or cassette unit.
Idle the system normally.

Remove a user clock.

Set today's date.

Set the time of day.

Wait for a character on a teletype.
Write a disk block.

Write a line.

Write sequential bytes.

% 4
g



FILE AND INPUT/OUTPUT COMMANDS (Continued)

A channel is initially linked to a particular file or device by means of the . OPEN
(or .APPEND) command. A channel is linked to a magnetic tape transport or
cassette unit by means of the . MTOPD command only. The association between
file or device and channel number is broken by using the . CLOSE command. All
currently open files and devices can be closed, and their associated channels
freed, by means of the system .RESET command.

RTOS provides four different 1/0 modes for reading and writing, These modes
are:

direct block

line

sequential

free format tape 1/0

In direct block mode, the user effects a transfer of a continuous group of disk
blocks. Core locations used in the transfer are also in sequence. The direct block
mode commands are .RDB and . WRB, read a block series and write a block series.
This mode is used only with disk 1/0, and no other I/O mode is used for disk I/0
under RTOS.

Line mode data transfers assume that the data read or written consists of ASCII
character strings terminated by either carriage returns, form feeds, or nulls.
Position within a file is implicit from the last call. That is, file data is processed
line by line in sequence from the beginning of the file to its end. In this mode the
‘system handles all device dependent editing at the device driver level. For
example, line feeds are ignored on paper tape and teletype input devices and are
supplied after carriage returns to all paper tape and teletype output devices.
Moreover, reading and writing do not require byte counts since reading continues
until a terminator is read and writing proceeds until a terminator is written. The
line mode commands are .RDL and . WRL, read and write a line.

The third mode is sequential mode. In this mode data is transmitted exactly as
read from the device or from core memory. No assumption is made by the system
as to the nature of this information. Thus this mode would always be used for
processing binary data. This mode requires the caller to specify a byte count for
each read or write request. The sequential mode commands are . RDS and . WRS,
read and write sequential.

Free format I/O permits the reading or writing of data on a word by word basis

to cassette or magnetic tape. This mode provides users with the means of accessing
data in variable size records within tape files. Free format I/O permits the

reading or writing of data records containing from 2 to 4096 words each. Free
format I/O commands also permit a tape reel to be spaced forward or backward
from 1 to 4095 records or to the start of a new data file, and these commands permit
the transport status word to be read.

2-3



FILE AND INPUT/OUTPUT COMMANDS (Continued)

Before free format [/O operations can be performed, the cassette or magnetic
tape unit must be initialized (.INIT) and opened (. MTOPD). To prevent further
1/O access from occurring, the device is released (.RLSE) and its channel is
closed (.CLOSE).

Open a File or Device (.OPEN)

Before other 1/O commands can be used, files and devices must be linked to channels.

Two parameters must be passed to . OPEN : a byte pointer to the device or file
name string, and a characteristic inhibit mask.

For every bit set in the characteristic inhibit mask word a corresponding device
characteristic is inhibited. (This mask is ignored when .OPEN is opening a file.)
Furthermore, these characteristics will be inhibited for as long as the device
remains open. The following lists the bit assignments, characteristic mnemonics,
and the characteristics in the inhibit mask:

Bit Mnemonic Meaning
1 DCCS80 80-column device.
2 DCLTU Device changing lower case ASCII to upper case.
3 DCFFO Device requiring a form feed on open.
4 DCFWD Full word device (reads or writes more than a
byte).
6 DCLAC Device requiring line feeds after carriage returns.
7 DCPCK Input device requiring a parity check; output
device requiring parity computation.
8 DCRAT Output device requiring a rubout after every tab.
9 DCNAF Output device requiring nulls after every form
feed.
10 DCKEY A keyboard input device.
11 DCTO A teletype output device.
12 DCCNF Output device without form feed hardware.
14 DCCGN Output device without tabbing hardware.
15 DCCPO Output device requiring leader /trailer.

If an MCA line is being opened, ACI cannot contain a characteristic inhibit mask.
Instead, for receiver lines, ACI1 must be cleared to all zeroes. If a transmitter
line is to be opened and the default number of retries (specified at RTOSGEN
time) is to be used, ACI must be cleared to all zeroes. However, if a different
timeout value is to be specified, bit 15 of AC1 must be set to one (and all other
bits in AC1 must be cleared). The actual specification of a retry count will then
be deferred to the time the write sequential I/O command (. WRS) is issued.

s

S



Open a File or Device (. OPEN) (Continued)

Having opened a file via . OPEN, the user is not guaranteed of being the exclusive
user of the file; others may also have opened the file via . OPEN and may have
modified its contents. 'This command cannot be used to open a cassette or
magnetic tape file.

The format of the . OPEN command is:

ACO - Byte pointer to file or device name terminated by a null. The
pointer must be even, i.e., the string must begin on a full word
boundary.

ACl - Characteristic inhibit mask.

.SYSTM

.OPEN n ; OPEN CHANNEL n
error return

normal return

In general, the user will wish to preserve all device characteristics as defined by
the system. This can be accomplished by preceding the . OPEN call with a SUB
1,1 instruction, passing an all-zero mask in ACI.

As an example, if the user wishes to read an ASCII tape without parity from the
high speed reader, he may inhibit parity checking by the following command
sequence:

LDA 0, READR
LDA 1, MASK
.SYSTM
.OPEN 3
READR: A172
| .TXT *PTR*
MASK: DCPCK ;PARITY CHARACTERISTIC

Possible errors resulting from the . OPEN command are:

AC2 Mnemonic  Meaning
0 ERFNO Illegal channel number.
1 ERFNM Ilegal file name.
12 ERDLE File does not exist.
21 ERUFT Attempt to use channel already in use.
31 " ERSEL Unit improperly selected.
60 ERFIU Attempt to open a busy MCA unit.

2-5



Get the Number of a Free Channel (. GCHN)

This call enables the user to obtain the number of a channel that is currently unused,
if any, so that a file may be opened on this channel via one of the file open calls.
.GCHN does not open a file on a free channel; it merely indicates a channel that is
free at the moment. Thus if . GCHN is issued in a multitask environment where it

is followed by a call to one of the file open commands, the channel may not be free
by the time the file open call is issued. To solve this problem, the user should
process error return ERUFT ("'Channel already in use") given by the file open
command by reissuing the call to . GCHN; this will ensure that a truly free channel
is discovered.

The format of this call is:
.SYSTM
. GCHN
error return
normal return
Upon a normal return, the channel number is returned in AC2:
AC2 - Free channel number

One possible error return may occur.

AC2 Mnemonic  Meaning

21 ERUFT No channels are free.

Open a Device for Appending (. APPEND)

An alternate system call for opening a device is implemented that is identical to
.OPEN in every respect except that it may not be used with disk files.

This routine requires the same two input parameters as does .OPEN, viz., a
byte pointer to the device name string, and a characteristic inhibit mask. The
mask bit definitions are as described earlier for .OPEN .

The format of the . APPEND command is:
ACO - Byte pointer to device name. The pointer must be even, i.e., the string
must begin on a full word boundary. The string must be terminated by a

null.
AC1 - Characteristic inhibit mask.

2-6

S

T



Opena Device for Appending (. APPEND) (Continued)

.SYSTM
.APPEND n
error return
normal return

Possible errors resulting from the . APPEND command are:

AC2 Mnemonic  Meaning
0 ERFNO Illegal channel number.
21 ERUFT Attempt to use channel already in use.

Close a File or Device (.CLOSE)

This command closes a device (performing any housekeeping required like trailer
output) and frees the device channel. If a file is closed, the file's channel is
released. The format of the . CLOSE command is:

.SYSTM

.CLOSE n ;CLOSE CHANNEL n
error return

normal return

Possible errors resulting from a . CLOSE command are:

AC2 Mnemonic  Meaning
0 ERFNO Illegal channel number.
15 ERFOP Attempt to reference a channel not in use.

Close all Files and Devices (.RESET)

This command causes all currently open files and devices to be closed. The
format of the . RESET command is:

.SYSTM
.RESET
error return
normal return

The error return is never taken.

2-7



Initialize a Magnetic Tape Unit or Cassette (. INIT)

Before free format tape I/O can occur, the magnetic tape unit or cassette must be
initialized. Initialization for a magnetic tape unit or cassette consists of making

the device known to the system, rewinding the tape to BOT, and resetting the tape
file pointer to zero.

A'full initialization causes the tape to be rewound to BOT and two end-of -file marks
to be written, This effectively erases any information which may have been on the
tape. A partial initialization causes the tape to be rewound to BOT and resets the
system tape file pointer to zero; no end of file mark is written.

Input parameters to this call are as follows:
ACO - Byte pointer to cassette or magnetic tape name (e.g., MT0, CT2, etc.).
The byte pointer must be even, i.e., the string must begin on a full
word boundary.

ACl - -1 for full initialization; other values indicate a partial initialization.

The format of the . INIT command is:

s

.SYSTM

JINIT

error return
normal return

Possible errors resulting from an .INIT command are:

AC2 Mnemonic  Meaning
2 ERICM [llegal command for device.
31 ERSEL Unit improperly selected ("unit ready" not set).
36 ERDNM Device not in system.
45 ERIBS Device already initialized.

Open a Cassette or Magnetic Tape Unit for Free Format I/0 (.MTOPD)

Before free format reading or writing can be performed on either an initialized
magnetic tape or cassette unit, the device must be opened and be linked to an
RTOS channel. The RTOS command to open files or devices (.OPEN) cannot
be used to open a magnetic or cassette tape unit for free format 1/0; only
-.MTOPD can be used to open these devices.




Open a Cassette or Magnetic Tape Unit for Free Format 1/O (,MTOPD) (Continued)

Input parameters to this call are the same as for the . OPEN command. .MTOPD
positions a free format tape to a desired file, since the file name passed to .MTOPD
will be of the form MTn:m or CTn:m . The input parameter to . MTOPD is as
follows:

ACO - Byte pointer to cassette or magnetic tape file name terminated by a null,
‘The pointer must be even, i.e., the string must begin on a full word

boundary.
The format of the MTOPD command is:
.SYSTM
.MTOPD n ;n 1S THE CHANNEL NUMBER

error return
normal return

Possible errors resulting from a . MTOPD command are:

AC2 Mnemonic  Meaning
0 ERFNO Illegal channel number.
1 ERFNM llegal file name.
12 ERDLE File does not exist.
21 ERUFT Attempt to use channel already in use.
31 ERSEL Unit improperly selected.

Release a Magnetic Tape Unit or Cassette (.RLSE)

To prevent further file access to either a magnetic tape or cassette unit, the system
command . RLSE must be issued. This command prevents further file access until
the device is initialized (see the .INIT command), and causes the tape to be rewound
to BOT.

One input parameter is required for this call:
ACO - Byte pointer to device name. The byte pointer must be even, i.e., the
string must begin on a full word boundary.

The format of this call is:

.SYSTM
.RLSE

error return
normal return

2-9



Release a Magnetic Tape Unit or Cassette (,RLSE) (Continued)

Possible errors resulting from an ., RLSE command are:

AC2 Mnemonic Meaning

2 ERICM Illegal command for device.
31 ERSEL Unit improperly selected (""unit ready" not set).
36 ERDNM Device not in system.

Read a Series of Disk Blocks (. RDB)

This command causes a series of disk blocks to be read into a user-specified
area in core memory. This routine requires four input parameters including

the number of the channel upon which the disk file was previously opened. These
parameters are: the starting disk block number within the disk file, the number
of disk blocks to be read, and the starting (i.e., lowest) core address to receive
the data. In the case where the channel number n in the command argument is set
to 77, the right byte of AC2 contains the channel number. The left byte of AC2
contains the number of blocks to be transferred. Each block that is read contains
256 16-bit words of disk storage.

The format of the . RDB command is:

ACO - Starting core address to receive the data.
AC1 -  Starting relative disk block number.
AC2, left byte - Number of blocks to be read.
AC2, right byte - Optional channel number.

.SYSTM
.RDB n ;n IS THE CHANNEL NUMBER.

error return
normal return

Possible error codes resulting from an .RDB command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD lllegal command for device.
6 EREOF End of file.
15 ERFOP File is not opened.

Upon detection of error EREOF the error code is returned in the right byte of
AC2; the left byte of AC2 contains the partial read count.

2-10

j—



Read a Line (.RDL)

This command causes an ASCII line to be read. Required input to this command
is a byte pointer in ACO to the starting byte address within the user area into
which the line will be read. This area should be 133 bytes long.

Reading will be terminated normally after a carriage return, form feed, or null
is detected. Reading will be terminated abnormally after reading 132 (decimal)
characters without detecting a carriage return, form feed, or null; upon
detecting a parity error; or upon an end of file. In all cases the read byte count,
including the carriage return, form feed, or null, will be returned in ACI.

If the read is terminated because of a parity error, the character having the
incorrect parity will be stored (with its parity bit cleared) as the last character
read. The byte pointer to the character in error can always be computed as:
(ACO) +(AC1)-1 =
The format of the .RDL command is:
ACO - Starting byte address.
.SYSTM
-RDL n ;READ FROM CHANNEL n

error return
normal return

AC1 - Byte count.

Possible errors resulting from a .RDL command are:

AC2 Mnemonic Meaning
0 ERFNO llegal channel number.
3 ERICD Illegal command for device.
6 . EREOF End of file.
15 ERFOP Attempt to read an unopened file.
22 ERLLI Line limit (132 characters) exceeded.
24 ERPAR Parity error.
7 ERSIM Simultaneous reads on same QTY line.
106 ERCLO QTY input terminated by channel close.

*(ACn) means "'contents of ACn"

2-11



Read Sequential (. RDS)

This command causes a sequential mode data transfer, causing data to be read
exactly as is. Required input parameters to this command are as follows: a byte
pointer to the starting byte address within the user area into which data will be
read, and the number of bytes (213-1 maximum) to be read.

The format of the .RDS command is:

ACO - Starting byte address.
AC1 - Number of bytes to be read.

.SYSTM
.RDS n ;READ SEQUENTIAL FROM CHANNEL n

error return
normal return

Possible errors resulting from an .RDS command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
15 ERFOP Attempt to read an unopened device or file.
47 ERSIM Simultaneous reads on same QTY line.
106 ERCLO QTY/MCA input terminated by channel close.

Use of the Card Reader in .RDL and . RDS Commands

When using $CDR or $CDRI1, the end of file condition on a . RDL will occur only if
a special end of file code is detected in column 1 of a card. This code is "all rows
punched. " It can be punched on a 029 keypunch by multipunching "+", "-", and "0"
through "9."

Note also that a Hollerith to ASCII translation only occurs if a .RDL has been
requested. The translation assumes 029 keypunch codes. A table of Hollerith-
ASCII translation is given in this section.

A .RDL is terminated upon the first trailing blank (which is translated as a
carriage return). If all 80 columns are data, a carriage return is appended as the
eighty -first character. If an illegal character is detected, a back slash is sub-

stituted for the illegal character.

2-12

S



Use of the Card Reader in .RDL and .RDS Commands (Continued)

In an .RDS command, the card is read in image binary. Each two bytes will be
used to store a single column. The packing is done as follows:

Byte <€ 1 > < 2 >

N
Column Number ; i 01234567389
Bit 01 2 3456 7 8 9111111
01 2 3 4 5

dddddddd

H
OOOOdddd;
;

The "d's" will be 1 for every column punched.

The byte count and byte pointer input to an . RDS command must both be even.

2-13



ASCII CODE

CHAR. CARD CODE
NUL 12-0-9-8-1 000
SOH 12-9-1 o001
STX 12-9-2 002
ETX 12-9-3 003
EOT 9-7 004
ENQ 0-9-8-5 005
ACK 0-9-8-6 006
BEL 0-9-8-7 007
BS 11-9-6 010
HT 12-9-5 011
LF 0-9-5 012
VT 12-9-8-3 013
FF 12-9-8-4 014
CR 12-9-8-5 015
e 12-9-8-6 016
S 12-9-8-7 017
DLE 12-11-9-8-1 020
DC1 11-9-1 021
DC2 11-9-2 022
DC3 11-9-3 023
DC4 4-8-9 024
NAK 9-8-3 025
SYN 9-2 026
ETB 0-9-6 027
CAN 11-9-8 030
EM 11-9-8-1 031
SUB 9-8-7 032
ESC 0-9-7 033
FS 11-9-8-4 034
GS 11-9-8-5 035
RS 11-9-8-6 036
Us 11-9-8-7 037

CHAR. CARD CODE ASCII CODE

SPACE NO PUNCHES 040
! 12-8-7 041
" 8-7 042
# 8-3 043
$ 11-8-3 044
7 0-8-4 045
& 12 ‘ 046
' or 8-5 047
( 12-8-5 050
) 11-8-5 051
* 11-8-4 052
+ 12-8-6 053
, 0-8-3 054
- 11 055
12-8-3 056

/ 0-1 057
0 0 060
1 1 061
2 2 062
3 3 063
4 4 064
5 5 065
6 6 066
7 7 067
8 8 070
9 9 071
8-2 072

; 11-8-6 073
< 12-8-4 074
= 8-6 075
> 0-8-6 076
? 0-8-7 077

Hollerith - ASCII Translation Table

g




CHAR, CARD CODE ASCII CODE
@ 8-4 100
A 12-1 101
B 12-2 102
G 12-3 103
o 12-4 104
E 12-5 105
F 12-6 106
G 12-7 107
H 12-8 110
I 12-9 111
] 11-1 112
K 11-2 113
L 11-3 114
M 11-4 115
N 11-5 116
0O 11-6 117
P 11-7 120
Q 11-8 121
R 11-9 122
S 0-2 123
T 0-3 124
U 0-4 125
A% 0-5 126
W 0-6 127
X 0-7 130
Y 0-8 131
Z 0-9 132
[ 12-8-2 133
\ 0-8-2 134
1 11-8-2 135
— or 11-8-7 136
— or - 0-8-5 137

Hollerith - ASCII Translation Table (Continued)

CHAR. CARD CODE ASCII CODE
. 8-1 140
a 12-0-1 141
b 12-0-2 142
c 12-0-3 143
d 12-0-4 144
e 12-0-5 145
f 12-0-6 146
g 12-0-7 147
h 12-0-8 150
i 12-0-9 151
j 12-11-1 152
k 12-11-2 153
1 12-11-3 154
m 12-11-4 155
n 12-11-5 156
o 12-11-6 157
p 12-11-7 160
q 12-11-8 161
r 12-11-9 162
s 11-0-2 163
t 11-0-3 164
u 11-0-4 165
v 11-0-5 166
W 11-0-6 167
x 11-0-7 170
y 11-0-8 171
z 11-0-9 172
{ 12-0 173
1 12-11 174
] 11-0 175
—~ 11-0-1 176
DEL 12-9-7 177



Write a Series of Disk Blocks (. WRB)

This command causes a series of data blocks, each 256 16-bit words in size, to
be written onto disk from a user-specified area in core memory. This routine
requires four input parameters including the number of the channel upon which the
disk or disk file was previously opened. These parameters are: the starting
relative disk block number within the file, the number of disk blocks to be written,

and the starting (i.e., lowest) core address to transmit the data. In the case where

the channel number n in the command argument field is set to 77, the right byte of
AC2 contains the channel number. The left byte of AC2 contains the number of
blocks to be written.

The format of the . WRB command is:

ACO - Starting core address to transmit the data.
AC1 - Starting relative disk block number.

AC2, left byte - Number of blocks to be read.
AC2, right byte - Optional channel number.

. SYSTM

. WRB n ;n IS THE CHANNEL NUMBER
error return B

normal return

Possible error codes resulting from an . WRB command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.
15 ERFOP File is not opened.
27 ERSPC Disk space is exhausted.

Upon detection of error ERSPC, the error code is returned in the right byte of
AC2; the left byte of AC2 contains the partial write count.

Write a Line (.WRL)

This command writes a line to a user ASCII file. Required input to this command
is a byte pointer in ACO defining the user core area from which writing will occur.

Characters are written with even parity and writing will be terminated normally

upon encountering a null, carriage return, or form feed. Writing will be ter-
minated abnormally after the transmission of 132 (decimal) characters if

2-16

g

Mg



Write a Line (.WRL) (Continued)

the 133rd character is not a carriage return, form feed, or null. In all cases,
ACI will contain, upon termination of the write, the number of bytes written from
the user area. The termination of a write line on a null allows formatting of output
without forcing a carriage return.

The format of the . WRL command is:

ACO - Starting byte address.

.SYSTM

.WRL n sWRITE FROM CHANNEL n
error return

normal return

AC1 - Byte count.
Possible errors resulting from the .WRL command are:

AC2  Mnemonic Meaning

0 ERFNO Illegal channel number.
3 ERICD lllegal command for device.
15 ERFOP Attempt to write an unopened file.
22 ERLLI Line limit (132 characters) exceeded.
47 ERSIM Simultaneous writes on same QTY line.
106 ERCLO QTY output terminated by channel close.

Write Sequential (. WRS)

This command writes binary data from a user core area. In addition to the channel
number, two parameters are input: a lgyte pointer to the starting address of the

user area, and the number of bytes (21 -1 maximum) to be written. The byte pointer
must be even if this call is issued for an MCA transmission. To transmit an end-
of-file in an MCA transmission, a byte count of zero is used in AC1 and the contents
of ACO are disregarded. Also, if the MCA transmit line was opened with a timeout

to be specified, the left byte of AC2 input to . WRS specifies the length of the timeout
period. Each unit period is approximately 200 milliseconds, and acceptable multiples
input in AC2 are 1 to 255 decimal. A zero value yields the default timeout period
specified at RTOSGEN time.

2-17



Write Sequential (. WRS) (Continued)

The format of the .WRS command is:

ACO - Starting address of the data within the user area.

AC1

- Byte count.

AC2, left byte - Optional timeout constant.
AC2, right byte - Optional channel number.

.SYSTM
.WRS n
error return

normal return

Possible errors are:

;WRITE TO CHANNEL n

Ilegal channel number.

Ilegal command for device.

Attempt to reference an unopened file or device.
Simultaneous writes on same QTY line.

Timeout has occurred.

No complementary MCA request.

Incomplete MCA transmission due to short receiver

MCA /QTY output terminated by channel close.

AC2 Mnemonic Meaning
0 ERFNO
3 ERICD
15 ERFOP
47 ERSIM
101 ERDTO
103 ERMCA
104 ERSRR
request.
106 ERCLO
113 ERNMC

No MCA receiver request.

Free Format Tape I/O (.MTDIO)

This command permits the operation of magnetic tape and cassette units on a
machine level: To read and write words in variable length records of from 2

to 4096 words within a data record, to space forward or backward from 1 to
4095 data records or to the start of a new data file, and to perform other similar

machine level operations.

Before free format 1/0 can be performed on a tape unit,

that unit must first have been opened for free format I/0 by means of the . MTOPD
system command.

The input parameters to . MTDIO are as follows:

ACO - Core data address, if data is to be transferred.
AC1 - Command word, subdivided into the following fields:

2-18

S



Free Format Tape 1/O (.MTDIO) (Continued)

bit 0: set to 1 for even parity, 0 for odd parity.
bits 1-3: set to one of the seven command codes which follow.
0 - read (words)*
- rewind the tape
space forward (over records or over a file of any size)
- space backward (over records or over a file of any size)
- write (words)
write end of file
- read device status word

W ) e
1

~1 O i
]

bits 4-15: word or record count. If O on a space forward (or space
backward) command, the tape is positioned to the beginning
of the next (or previous) file on the tape. If O on a read or
write command 4096 words are read (or written) unless an
end of record is detected.

AC2 - channel number if nequals 77g. (Note that when a file is opened for
free format I/O, it is opened globally. That is, all files on the
specified device can be accessed. )

The format of the . MTDIO command is:

.SYSTM:
.MTDIO n- ;n IS THE CHANNEL NUMBER

error return
normal return

Upon a rewind or read status command, if no system error is detected, AC2 returns
containing a status word with one or more of the following bits set:

bit 0 - error (bitl, 3, 5, 6, 7, 8, 10 or 14 is set to 1)

bit 1 - data late

bit 2 - tape is rewinding

bit 3 - illegal command

bit 4 - high density if set to 1; otherwise, low density (always 1 for cassettes)

bit 5 - parity error

bit 6 - end of tape

bit7 - end of file

* When attempting to read a 7-track tape with odd parity (i.e., a tape not written on

an RTOS system), the end-of-file is not detected by the controller; the first word
in the next record is read as 007417. Thus the first record of each file (after the
first file) has appended to it the end-of-file of the previous file.

2-19



Free Format Tape 1/O (.MTDIO) (Continued)

bit 8 - tape is at load point

bit 9 - 9-track if set to 1; otherwise, 7-track (always set to 1 for casettes)
bit 10 - bad tape or write failure

bit 11 - send clock (always set to zero for cassettes)”

bit 12 - first character (always set to zero for cassettes)”

bit 13 - write-protected or write-locked

bit 14 - odd character (always set to zero for cassettes)

bit 15 - unit ready.

For more information about each of these status bits, see ""Nova Cassette'' or
"Magnetic Tape" in How To Use the Nova Computers.

Upon a read, write, space forward, or space backward command, if no system
error is detected, AC1 contains the number of words written (or read) or the
number of records spaced. A word or record count is returned in ACI upon a
premature end of file.

Upon detection of a system error, the error return is taken and AC2 is set to
contain one of the following:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device (i.e., improper open).
15 ERFOP Attempt to reference an unopened file.
30 ERFIL File read error.

If no system error is detected but a hardware error occurs (i.e., bit O of the
status word is set), the error return is taken and AC2 is set to the transport status
word. If no system error and no hardware error occurs, the normal return is
taken and the transport status word is returned in AC2.

The following table summarizes the return taken and contents of ACl and AC2 with
different MTDIO command selections.

* Bits used for maintenance only.

2-20

N



Free Format Tape 1/0 (.MTDIO) (Continued)

COMMAND RETURN AC1 AC2

Any MTDIO command with a Error Same as | System error

system error detected input code

Rewind (TSW bit 0 = 0) Normal Original | Transport status
input is | word (TSW)

Rewind (TSW bit 0 = 1) Error lost

Read Status (TSW bit 0 = 0) Normal Original | TSW
input is | (status bit 0 is 0
lost

Read Status (TSW bit 0 = 1) Error Original | TSW
input is | (status bit 0 is 1
lost

Read, Write, Space Forward, Normal
Space Backward; bit O in TSW

is setto O Word or
Record | TSW
Read, Write, Space Forward, Error count
Space Backward; bit 0 in TSW (only after
is setto 1 10 retries
in read/
write)
Write end -of-file Error Original | TSW
(TSW bit 0 = 1) input is
lost

The system will perform 10 read retries before taking the error return. For
write errors, the following sequence will be performed 10 times before taking
the error return: backspace and write 9 times, then backspace, erase a 2-1 /2"
length of tape, and write. Thus the system will perform 100 write retries before
signaling an error.

2-21




TELETYPEWRITER AND VIDEO DISPLAY COMMANDS

Transfer of single ASCII characters between $TTI/$TTO and ACO is handled by
the system commands .GCHAR and .PCHAR . No channel is required for the
transfers, and $TTI/$TTO is always available without requiring a prior . OPEN
command.

An additional system call exists which allows a task to be readied upon detection
of a user-defined character input via a teletype or display keyboard.

Get a Character ( . GCHAR)

This command returns a character input via $TTI to ACO. The character is right
adjusted in ACO with bits 0-8 cleared. No channel is required; the $TTI is always
used as input for this command. The format of the . GCHAR command is:

.SYSTM
.GCHAR

error return
normal return

ACO, bits 9-15 - ASCII input character
No error return is possible from this command.

Put a Character (. PCHAR)

This command transmits a character in AC0, right adjusted, to $TTO. No channel
is required, and the $TTO is always used with this command. The format of the
. PCHAR command is:

ACO0, bits 9-15 - ASCII output character
. SYSTM
. PCHAR
error return

normal return

No error return is possible from this command.

2-22




Wait for a Keyboard Character (. WCHAR)

This command suspends the caller until either a specified character is typed onto
any console keyboard. or the call is reissued by another task to terminate this
keyboard wait. Only one task may be suspended for a keyboard character wait
at any one moment,

The required input to this call is either the keyboard character which will ready the
task or -1, terminating the keyboard character wait and readying the suspended
task. These parameters are input via AC0O. Since the calling task may be readied
by either the transmission of a specified keyboard character or by the keyboard wait
call being terminated, an appropriate code is returned in AC1 when the normal
return is taken. This code will be either the device code of the console keyboard
which issued the raquested wait character, or -1; -1 indicates that the previous
wait was terminated.

The format of this call is:

ACO - Wait character in right byte, or -1 to terminate another
task's wait request.

.SYSTM

. WCHAR
error return
normal return

AC1 - Device code of the keyboard transmitting the wait character,
or -1. Minus 1 indicates that the previous wait request
was terminated.

The error return is taken if a second task tries to suspend itself for a keyboard
character while another task is still suspended for a wait character. In this

case, AC2 is set to the following:

AC2 Mnemonic Meaning

47 ERSIM A previous wait-character request is outstanding.

MEMORY SIZE COMMANDS

RTOS provides a pair of system commands used to determine the highest location
of the loaded user program (NMAX), the highest memory address available in
user address space (HMA), and a means to increase or decrease the address
space allocated to the user program by varying NMAX. NMAX is a pointer

2-23



MEMORY SIZE COMMANDS (Continued)

contained in the User Status Table at displacement USTNM; this table is discussed
in Chapter 5, SYSTEM ORGANIZATION, (Note that the /S switch must not be used
in the RLDR command.)

40@8 Binary Loader - IIMA Binary Loader ~— HMA
«— NMAX
- NMAX Symbol Table
User Program User Program

Memory Maps with and without Symbol Table

Determine Available Memory (. MEM)

This command returns the current value of NMAX and the value of HMA. HMA
represents the location immediately below the bottom of the binary loader (or

the top of the symbol table). A SUB 1, 0 instruction after the.MEM call determines
the additional amount of memory available to the user program by putting its

value in ACO,

The format of the . MEM command is:

.SYSTM
.MEM

error return
normal return

AC1 - NMAX.
ACO - HMA.

There are no error returns from this command.

Allocate Memory by Changing NMAX (. MEMI)

This command returns the current value of NMAX and the value of HMA. HMA
represents the location immediately below the bottom of the binary loader (or
the top of the symbol table). A SUBI, 0 instruction after the . MEM call
determines the additional amount of memory available to the user program

by putting its value in ACO.
2-24

e

o



Allocate Memory by Changing NMAX (.MEMI) (Continued)

NMAX will not be changed if the new value would be equal to or higher than the
lowest address of the binary loader. No check is made as to whether or not the
user decreases NMAX below its original value (as determined at relocatable
load time) nor, if a symbol table resided in upper memory, whether NMAX is
increased beyond the bottom of the symbol table.

The format of the .MEMI command is:
ACO - NMAX increment or decrement:
.SYSTM
.MEMI
error return
normal return

ACl - New NMAX.

There is one error which may result from a . MEMI command:

AC2  Mnemonic Meaning
26 ERMEM Attempt to overwrite the binary loader.

SYSTEM RETURN COMMANDS
‘These calls return control to their error returns unconditionally.

System Return (.RTN)

This command stops all tasks (except the caller), closes all channels, and
returns control unconditionally to the error return; no normal return is reserved.
The format of the . RTN command is:

.SYSTM
.RTN
error return

The following error code is returned:

AC2  Mnemonic Meaning

23 ERRTN Attempt to restore a nonexistent image (as in RDOS).

2-25



System Error Return ( ERTN)

This command stops all tasks (except the caller), closes all channels, and returns
control unconditionally to the error return; no normal return is reserved. The
format of the . ERTN command is as follows:

.SYSTM
.ERTN
error return

The following error code is returned in AC2:

AC2 Mnemonic Meaning

23 ERRTN Attempt to restore a nonexistent image (as in
RDOS).

CLOCK AND CALENDAR COMMANDS

RTOS clock and calendar commands may be used in any system which includes a
real time clock. RTOS clock and calendar commands permit ready tasks to be
suspended for a period of time, permit the system real time clock to be examined,
and allow the creation of a user clock to specify a recurring interruption of
multitask activity.

Delay the Execution of a Task (. DELAY)

This command suspends the caller for a specifiable number of pulses of the system
real time clock. Thus this command permits the creation of a time slicing facility
within RTOS. The system real time clock frequency is set when a system is
generated, and no system call can alter this frequency.

The format of the .DELAY command is:
AC1 - Number of RTC pulses in the delay period.
.SYSTM |
.DELAY
error return

normal return

Contents of ACI are lost upon return. One possible error may occur:

2-26

%
i



Delay the Execution of a Task (.DELAY) (Continued)

AC2  Mnemonic Meaning
2 ERICM Illegal system command (i.e., no RTC in system).

Get Today's Date (. GDAY)

This command requests the system to return the number of the current day, month,
and year. The day is returned in ACO, the month in ACI, and the year in AC2. The
The format of the . GDAY command is:

.SYSTM
.GDAY

error return
normal return

ACO - Day of the month.
ACl - Month of the year.
AC2 - Year.

The error return is never taken.

Set Today's Date (.SDAY)

This command permits the system calendar to be set to a specific date. The system
will increment the date when the time of day passes 23 hours, 59 minutes, and 59
seconds. The caller passes the number of the day within the month in ACO, the
number of the month in AC1 (January is month number 1), and the current year in
AC2. The format of the .SDAY command is:

ACO - Day of the month.
ACl - Month of the year.
AC2 - Year.

.SYSTM
.SDAY

error return
normal return

One possible error return is:

AC2  Mnemonic Meaning
41 ERTIM llegal day, month or year.

2-27



Get the Time of Day (. GTOD)

This command requests the system to pass the current time in hours, minutes

and seconds to the caller. The format of the . GTOD command is:

.SYSTM
.GTOD

error return
normal return

ACO - Second.
AC1 ~ Minute.
AC2 - Hour (using a 24-hour clock).

No error return is possible.

Set the Time of Day (.STOD)

This command permits the caller to set the system clock to a specific hour,
minute, and second. The format of the .STOD command is:

ACO - Second.
AC1 - Minute.
AC2 - Hour (using a 24-hour clock).

.SYSTM
.STOD
error return

normal return

If the error return is taken, the following error code is given:

AC2 Mnemonic Meanin

41 ERTIM Illegal time of day.

Examine the System Real Time Clock (. GHRZ)

This system call permits the caller to examine the frequency of the real time

clock (the frequency was set when the RTOS system was generated). One of

five frequency codes is returned in ACO, as described below. The format of the

.GHRZ command is:

2-28




Examine the System Real Time Clock (., GHRZ) (Continued)

.SYSTM
.GHRZ

error return
normal return

AC0O: O - there is no real time clock in the system.
1 - the frequency is 10HZ.

2 - the frequency is 100HZ.

3 - the frequency is 1000HZ.

4 - line frequency is 60HZ.

5

- line frequency is 50HZ.
The error return is never taken.

Define a User Clock (.DUCLK)

This command permits the definition of a user clock. When the user-defined
interval expires, the task scheduler and multitask environment--if any--are
placed in suspension, and control goes to a user-specified routine outside the
task environment. No task calls (other than .UCEX and .IXMT) may be issued

from this interrupt routine, since multitask activity is in suspension. Only one
user clock may be defined at any one moment. '

The format of the .DUCLK command is:

ACO - Number of RTC pulses during each user clock interval.
AC1 - Address of user interrupt routine.

.SYSTM
.DUCLK
error return
normal return

Only one error condition is possible:

AC2  Mnemonic Meaning
45 ERIBS A user clock already exists.

2-29



Exit from a User Clock Routine (. UCEX)

Upon a user clock interrupt, AC3 will contain the address of the return upon
entry to the routine specified in .DUCLK. To return from the user clock routine,
AC3 must be loaded with the return address that it contained upon entry to the
routine, and task call . UCEX must be issued.

The format of this call is:
AC3 - Return address upon entry to routine.
.UCEX
Control returns to the point outside the user routine which was interrupted by
the user clock. No errors are possible from this call. This call can be issued

in a single task environment.

Remove a User Clock (. RUCLK)

This system command removes a previously defined user clock from the system.
The format of this call is:

.SYSTM

.RUCLK

error return

normal return

The error return is never taken.

3k o Sk

2-30




CHAPTER 3

TASK CALLS

The following is a list of all RTOS task call mnemonics:

.ABORT
.AKILL
. ARDY
. ASUSP
.DQTSK
.IDST
LIXMT
.KILAD
JKILL

. PRI
.QTSK
.REC

. SUSP

. SMSK
.TASK

. TIDK

. TIDP

. TIDR
.TIDS
.UCEX
. UIEX

. UPEX

. XMT

. XMTW

Terminate a task immediately.

Kill all tasks of a specified priority.
Ready all tasks of a specified priority.
Suspend all tasks of a specified priority.
Degueue a queued task.

Get a task's status by 1. D. number.
Transmit an interrupt message.

Define a kill-processing address.

Kill the calling task.

Change the calling task's priority.

Queue a task for periodic execution.
Receive a task message.

Suspend the calling task.

Modify the current interrupt mask.
Create a task.

Kill a task specified by I. D. number.
Change the priority of a task specified by I. D. number.
Ready a task specified by L D. number.
Suspend a task specified by 1. D. number.
Exit from a user clock routine.

Exit from a user interrupt routine.

Exit from a user power fail routine.
Transmit a task message.

Transmit a task message and wait for its receipt.

Multitasking Concepts Summary

A full description of RTOS multitasking concepts is given in Chapter 1 of this
manual and in the Introduction to RTOS, 093-000093. The following summary
information is given to review these concepts.

Before a task can be run, it must be made known or initiated to the system.

can be initiated by either the . TASK or .QTSK task calls.

a task, while . QTSK initiates the task for execution on a periodic basis.

Tasks which have been initiated into the system exist in one of three states:

execution, ready, or suspended.

3-1

Tasks
. TASK simply initiates

The executing task is that task which is currently




Multitasking Concepts Summary (Continued)

in control of the CPU. A ready task is a task which is awaiting being raised to the
execution state. A suspended task is one which, for one reason or another, is
awaiting being raised to the ready state and can never gain control until it is so
raised. Calls ,SUSP and . ASUSP can be used to place one or more tasks in the
suspended state. .ARDY is used to raise a group of tasks which are all at the
same priority to the ready state.

Tasks are not only distinguished by their system states; they are also differentiated
by priority and optionally by identification numbers. Although task priority is
defined at the time that each task is initiated, task priority can be changed by the

. PRI call. Task identification numbers are also established when a task is
initiated. Several task calls are used to perform task functions on specific tasks
identified by I. D, number. These calls are .IDST, . TIDK, .TIDP, . TIDR, and

. TIDS.

A mechanism is provided for transmitting and receiving one-word messages
between single tasks only. This mechanism can also be used to lock a task
process, preventing multiple tasks from entering the process concurrently.
One-word messages are deposited in locations whose contents are set to zero

when they contain no message. If several tasks attempt to receive a message from
the same address, only the highest priority task will receive the message.

The . REC and . XMT commands can be used to lock and unlock a process or data
base which is shared by several tasks, preventing more than one task at a time
from accessing the data base or the process path. In essence, the procedure is
to define a synchronization word, the message location, which all tasks will
attempt to receive. The task in control of the locked resource then issues an

. XMT to the synchronization word when the resource is to be made available to
the other waiting tasks. The highest priority task waiting to receive (. REC) the
synchronization word is then readied and gains unique control of the resource.
This task, in turn captures the use of the resource until it unlocks the resource
by issuing an . XMT to the synchronization word, etc.

This technique requires that the locking facility be initialized before any tasks use
it. Initialization can be performed either by setting the synchronization word
initially to a non-zero value, or by having an initialization task issue an . XMT to
the synchronization word.

The operating system provides a variety of means to terminate task operations.
Tasks can be killed within a user program in an orderly fashion, or task
operations can be halted abruptly (. ABORT). Tasks can be killed in an orderly
fashion either singly by an L D number (, TIDK), as a priority group (. AKILL),

3-2




Multitasking Concepts Summary (Continued)

or the calling task can kill itself (.KILL). To ensure that a task can be terminated
in an orderly fashion, RTOS provides a facility to define for each task a special
reprieve routine which will gain control upon an attempted orderly kill.

Upon most orderly task terminations, . AKILL or ., TIDK, each task to be terminated
is readied unless it was suspended due to a . SYSTM call. Thus if it was sus-
pended by a . REC, .XMTW, ,SUSP, or . TIDS task call, the suspension would be
lifted. If the task were in suspension due to an outstanding . SYSTM call, that

call would be completed before the task was readied. In either case, after the

task to be killed has been elevated to the ready state, one of two actions then

occurs depending upon the intention of the user. First, if no reprieve address

is provided, then the task is simply terminated.

Alternatively, if the user wishes, a special kill-processing or reprieve address
could have been specified for the task. If such an address has been specified,

then when the task to be killed receives control, control goes to this special
processing address. This facility gives the user flexibility in providing an orderly
release of resources should the task be killed. The kill-processing routine can
act as a reprieve, since the task executing this routine will not actually be
terminated until it itself issues a ,KILL call. Thus the kill-processing routine
can also be used as a validation procedure to determine whether or not the

target task should be terminated.

The case of self-termination, .KILL, is special. If a task attempting to terminate
itself has a kill-processing address specified, then upon issuing the . KILL call
this task will be readied and will gain control in it's turn at its kill-processing
address. If it has defined no such address, then the task will be terminated
immediately.

Whether orderly kills or aborts are used to terminate a task, when the task is
terminated its TCB is relinquished to the free TCB pool for possible use in the
initiation of other tasks.

Tasks which were initiated by a . QTSK call have their periodic execution halted by
means of a . DQTSK call. If a queued task is currently running, however, it will
continue to run until it terminates itself or is terminated.

All RTOS task calls except . SMSK, ,UCEX, .UIEX and . UPEX are described in
this chapter in alphabetical order. .UCEX is found in Chapter 2, and the re-
maining task calls are described in Chapter 4.

3-3




Abort a Task (. ABORT)

The . ABORT task call causes a specified task to be readied immediately and to
execute the equivalent of a . KILL task call as soon as it gains control of the CPU.
The exact time of completion of the ,KILL is dependent on the priority of the
aborted task relative to other ready tasks. For example, a task attempting to
perform a write sequential of 500 bytes might be aborted after writing any
number of bytes. The task which is to be aborted is specified by I. D. number.
Thus the caller may abort either itself or some other ready or suspended task.

Outstanding operations performed by the task, like waiting for a message trans-
mission/reception (. XMTW/.REC), are terminated. Likewise, all system calls
are aborted with the exception of calls performing QTY or MCA I/O, QTY and
MCA I/0 can be aborted by closing their channel(s) with a . CLOSE or . RESET
system command.

The format of this call is as follows:
ACl1 -~ L D. of the task to be aborted.
.ABORT
error return
normal return

The contents of ACO is lost upon return.

The error return is taken under one of two conditions:

AC2  Mnemonic Meaning
61 ERTID An 1.D. of zero was specified, or no such task I.D. was
found.
110 ERABT The specified task was performing QTY or MCA I/O.

Kill All Tasks of a Specified Priority (. AKILL)

This command either kills all tasks of a given priority or transfers control to their
kill-processing addresses. All TCBs that are deleted from the active queue are
placed in the free TCB chain, Tasks in suspension due to . XMTW, . TIDS, .REC,
or . SUSP calls will be raised to the highest priority ready state immediately. If

an attempt is made to kill a task suspended by an outstanding . SYSTM call, that
task will be raised to the highest priority at the completion of the .SYSTM call
The calling task itself may be deleted by this command.

3-4

-



Kill All Tasks of a Specified Priority (., AKILL) (Continued)

The format of this call is:
ACO - Task priority.

JAKILL
normal return

There is no error from this call. If no tasks exist with the priority specified in
ACO, no action is taken. If all tasks become deleted, the effect is to close all the
channels and to idle the system, since control returns to the task scheduler.

Ready All Tasks of a Specified Priority (.ARDY)

This call readies all tasks which were previously suspended by .ASUSP (.SUSP
or . TIDS) whose priority is specified in AC0O. That is, bit 1 in word TPRST of

each TCB (see Chapter 5) that was set by a previous call to . ASUSP, .SUSP, or
. TIDS is now reset. Tasks suspended for other reasons too (e. g., outstanding

system calls) will only be readied when the task is fully ready, i.e., bits 0

and 2 are also reset. The format of this call is:

ACO - Task priority.

.ARDY
normal return

There is no error return from this call. If there are no tasks with the priority
specified in ACO, no action is taken and control goes to the normal return.

Suspend All Tasks of a Given Priority (. ASUSP)

This command suspends all tasks with the priority given in AC0. The calling task
itself may be suspended by this call, All tasks suspended by . ASUSP (including
those additionally suspended for other reasons such as an outstanding system call
or waiting for a task message transmission) will remain suspended until readied
by an . ARDY or . TIDR command,

The format of this call is:
ACO - Task priority.

. ASUSP
normal return

3-5



Suspend All Tasks of a Given Priority (., ASUSP) (Continued)

There is no error return from this call. If no tasks exist with the given priority,
no action is taken and control goes to the normal return.

Dequeue A Core-resident or Overlay Task (. DQTSK)

This call causes a task which has been queued for execution by task call . QTSK to
be dequeued. In effect, the . DQTSK call bypasses the value which is currently
stored in displacement QNUM of the task's User Task Queue Table. If at some
later moment the task is requeued by a call to . QTSK, the queuing process will
resume its normal course since . DQTSK does not actually modify the contents

of QNUM.

The format of this call is as follows:
AC1 - I.D. of the task to be dequeued.
. DQTSK
error return

normal return

Upon a normal return, AC2 returns the base address of the task's queue table
(QPC). If the error return is taken, the following code is given:

AC2  Mnemonic Meaning

61 ERTID Task I. D. error.

Get a Task's Status (.IDST)

This command obtains a code describing a task's status. The task whose status
is to be obtained is specified by inputting its identification number in ACl. The
format of this call is:

AC1 - Task I. D. number

.IDST
normal return

3-6

S

i



Ry I

Get a Task's Status (,IDST) (Continued)

0 - Ready.

1 - Suspended by a . SYSTM call.

2 - Suspended by .SUSP, .ASUSP, or .TIDS.

3 - Suspended by . XMTW or .REC.

4 - Not used.

5 - Suspended by . ASUSP, ., SUSP, or ,TIDS and by , SYSTM.

6 - Suspended by . XMTW or .REC and by . SUSP, .ASUSP, or . TIDS.
7 - Not used.

10~ No task exists with the specified I. D. number.

There is no error return from this call.

Transmit a Message from a User Interrupt Service Routine (. IXMT)

Whenever a device requiring special user service generates an interrupt request,
(see Chapter 4), the entire task environment becomes frozen until servicing of the
special user interrupt is completed. All tasks will resume their former states
when the environment is restarted unless the user transmits a message to one of
them by means of the .IXMT call from the interrupt service routine. In the latter
case, rescheduling occurs when the task environment is restarted.

If the task for which the non-zero message is intended has issued a . REC for the
message, the task state is changed from suspended to ready even though task
activity is in suspension. If more than one task is awaiting a message at this
location, only one will receive the message and be readied. Contents of all
accumulators are destroyed upon return from .IXMT, so the user is cautioned to
restore AC2 and AC3 before attempting an exit from the service routine.

As with . XMT (described later in this chapter), .IXMT causes a non-zero message
to be deposited in a location. The contents of this location must be zero at the time
. IXMT is invoked, or else the location will be deemed to be already in use.

The format of this call is:

ACO - Message location.
ACl - Message.

IXMT

error return
normal return

3-7



Transmit a Message from a User Interrupt Service Routine (.IXMT) (Continued)

The error return is taken if the message address is already in use (l.e., if its
contents are nNon-zero).

AC2  Mnemonic Meaning
43 ERXMT Message location is in use.

Define a Kill-Processing Address (. KILAD)

The .KILAD task call permits a user to define a special address which will gain
control the first time that the termination of a task, the "target task, " is
attempted. The second time that a termination of this task is attempted, the task
will be terminated without control transferring to the kill-processing address.

The kill address can be defined to provide a means of releasing system resources
before termination occurs. Such resources as overlay areas, channels, user
devices and user clock definitions must be released explicitly by the user. Having
released these resources and performed any other desired functions, the task
must then itself issue a .KILL call in order for its termination to occur. Since
this would be the second attempt to terminate the task, termination would occur
immediately. '

If, on the other hand, the target task decides not to terminate itself, then before
branching out of the kill-processing routine it should issue a . KILAD call to the
same or to a different kill-processing routine. This will ensure that if an attempt
is made later to kill this task, it will not be killed immediately but will branch
again to its kill-processing routine.

Users should note that a task in a kill-processing routine is in execution at the
highest priority. Thus such routines will retain control until they relinquish this
control by a task state transition or by a priority level change.

The format of the . KILAD task call is as follows:
ACO - Address of the kill-processing routine.

.KILAD
normal return

There are no error returns from this call.

3-8




Delete a Calling Task (. KILL)

This command deletes the calling task’s TCB from the active queue, and places

it in the free element TCB chain. The calling task is the only task that may be
deleted via this command. There is no return from this call. If a kill-proce ssing
address has been defined for this task, then control goes to this address. Other-
wise, control returns to the task scheduler which allocates system resources

to the highest priority task that is ready.

The format of this call is:
.KILL
There is no return from this call. Control goes to the task scheduler.

Change the Priority of a Task (.PRI)

This command changes the priority of the calling task. The calling task will be
assigned the lowest position in the new priority class. That is, equal priority
tasks receive control on a round-robin basis, and this task will be the last task
in this priority class to be allocated CPU control by the scheduler.

The format of this command is:
ACO - New task priority.

PRI
normal return

There is no error return from this command. If a priority greater than 255 8 is
requested, only the value in bits 8 through 15 will be accepted.

Queue a Core-resident Task (. QTSK)

This command periodically initiates a task and queues it for execution. If there is
no TCB currently available for the creation of the new task, this call will be
carried out as soon as a TCB becomes available. If two tasks are queued for
execution at the same time of day, the higher priority task will receive control
first. After each time that a new task is created and activated by this call, it is
the user's responsibility to insure that this task is killed, suspended, etc.

AC 2 contains the starting address of a table, QTLN words long (see PARR,
Appendix C), which describes the priority of the task, the time that is to be
created, etc. The following discusses the entries in this table,

3-9




Queue a Core-resident Task (.QTSK) (Continued)

User Task Queue Table

Displacement Mnemonic Meaning

0 QPC Starting address of the task.

1 QNUM Number of times to queue the task (-1 if the
task is to be queued an unlimited number of
times).

2 QTOV Reserved for compatibility with RDOS.

3 QSH Starting hour (-1 if the task is to be queued
immediately).

4 QSMS Starting second in hour (reserved but unused if
QSH=-1)

5 QPRI Task L. D. /task priority.

6 QRR Rerun time increments in seconds.

7 QTLNK Same as TLNK of queued task's TCB (set by
system).

10 QOCH Reserved for compatibility with RDOS.
11 QCOND Reserved for compatibility with RDOS.
12 QLDST Reserved for compatibility with RDOS.

Entry QPC is reserved for the starting address within the task where execution will
commence. QNUM is an integer value describing the number of times the task

will be queued. The task will be queued QNUM times (or without limit if QNUM=-1)
unless the task call . DQTSK is issued. This call halts the queuing of the specified
task, essentially bypassing the value specified by QNUM.,

Entries QSH, QSMS, and QRR all affect the time that the task will be created. QSH
contains the hour in the day, and QSMS contains the second within that hour that

the task will become created. If QSH contains -1, the task will be created
immediately. QRR contains the increment in seconds between each time the task
will be created.

QPRI contains the task I. D. (if any) in its left byte and task priority in its right
byte, If a task with the same L D. exists at the time this task is activated, this

task's I. D. number will be cleared to zero. QTLNK is maintained by the system.

With AC2 containing a pointer to QPC of the User Task Queue Table, the calling
sequence of this task call is:

3-10




Queue a Core-resident or Overlay Task (,QTSK) (Continued)

.QTSK
error return
normal return

If the error return is taken, AC2 will contain the following error code:

AC2 Mnemonic Meaning
50 ERQTS Illegal information in Task Queue Table.

If the error return is not taken, control returns to the task issuing the call at the
normal return based on the task's priority; the calling task does not become
suspended.

Receive a Message (. REC)

This command returns a message in ACI1 that another task or interrupt service
routine has posted by means of a transmit command, and restores the contents
of the message location to all zeroes. Only one task at a time can receive a
message from a given location.

If the transmitter has not yet posted a message for the receiving task, the receiver
becomes suspended until the message is issued. If the message has already been

issued and if the task has not also been suspended by some other event, control
returns to the task scheduler.

The format of this command is:
ACO - Message address.

.REC
normal return.

AC1 - Message.
There is no error return from this command.

Suspend a Task (.SUSP)

This command places the calling task in the suspended state by setting bit 1 of the
task's status and priority word. The format of this call is:

. SUSP
normal return




Suspend a Task (. SUSP) (Continued)

There is no error return. The suspended task remains suspended until it is readied
by an . ARDY or . TIDR command.

Create a Task (. TASK)

This command creates a new task in the user environment, and assigns to it a

TCB from the TCB pool allocated during system generation. This command creates
a task at a specified priority and assigns a unique identification number ( L. D.)

to the task, if desired. When the user program is started, only one task (the

default task) exists. Thus this command is used to start up a multitask environment.

The new task can be assigned any priority from 0 through 255 decimal, and any
task I. D. in the same range. If the priority input to this command is 0, the
priority of the caller will be assigned to the new task. More than one task with
anl.D. of zero can exist. This call will pass to the new task the contents of the
caller's AC2; thus this accumulator can be used for relaying an initial one-word
message to the newly created task.

The format of this command is:

ACO, left byte - New task's I.D.

ACO, right byte - New task's priority.

ACl - New task's starting address.

AC2 - Caller's AC2 passed to the new task.

. TASK
error return

normal return

If the error return is taken, ACZ2 will contain one of the following error codes:

AC2  Mnemonic Meaning
42 ERNOT No TCB's available.
61 ERTID Same I.D. number (except 0) already assigned.

Kill a Task Specified by I.D. Number (. TIDK)

This call kills only that task whose identification number is specified in ACI1.
The format of this command is:

3-12

5

S



Kill a Task Specified by I. D. Number (. TIDK) (Continued)

ACl - I.D. of task to be killed.
. TIDK
error return
normal return

If the error return is taken, AC2 will contain the following error code:

AC2 Mnemonic Meaning

61 ERTID No task exists with this 1. D.

Change the Priority of a Task Specified by I. D. Number (. TIDP)

This command changes the priority of that task whose identification is specified by
the contents of AC1. The new priority to be assigned to the task is given in ACO,
bits 8 to 15. Thus the format of this task call is as follows:

ACO, right byte - New priority.
AC1 - LD. of task whose priority is to be changed.

. TIDP
error return
normal return

If the error return is taken, the following code is given:

AC2 Mnemonic Meaning

61 ERTID No task exists with this L D.

Ready a Task Specified by 1. D. Number (. TIDR)

This command readies only that task whose identification number is input in ACI,
That is, this command resets bit 1 in TPRST of this task's TCB which was set by
a previous call to . ASUSP, .SUSP, or . TIDS. The format of this call is:

ACl - I.D. of task to be readied.
. TIDR

error return
normal return

3-13



Ready a Task Specified by I. D. Number (. TIDR) (Continued)

If the error return is taken, AC2 will contain the following error code:

AC2  Mnemonic Meaning

61 ERTID No task exists with this 1. D,

Suspend a Task Specified by I.D. Number (. TIDS)

This command suspends only that task whose identification number is input in ACI.
That is, this call sets bit 1 in word TPRST of the specified task’'s TCB. The format
of this command is:

. TIDS
error return
normal return

If the error return is taken, AC2 will contain the following error code:

AC2  Mnemonic Meaning

61 ERTID No task exists with this 1. D.

Transmit a Message (.XMT), and Wait (XMTW)

These two calls permit the sending of a one-word non-zero message by one task

to an empty (all-zero) message location for another task. The difference between
these commands is . XMT simply causes the message to be deposited, while

. XMTW deposits the message and suspends the caller until the message is received.
. XMTW will not cause the caller to be suspended if a . REC has already been

issued for this message.

The format of this call is:

ACO - Message address.
ACl1 - Message.

.XMT (or .XMTW)

error return
normal return

3-14




Transmit a Message (. XMT), and Wait (. XMTW) (Continued)

The error return is taken if the message address is already in use (i.e., if the
contents are non-zero). AC2 will then contain the following error code:

AC2Z Mnemonic Meaning
43 ERXMT The message address is already in use.
115 ERXMZ Zero message word,

Locking a Process via the . XMT/. REC Mechanism

The . REC and . XMT commands can be used to lock and unlock a process or data
base which is shared by several tasks, preventing more than one task at a time
from accessing the data base or the process path. In essence, the procedure is
to define a synchronization word, the message location, which all tasks will
attempt to receive. The task in control of the locked resource then issues an

« XMT to the synchronization word when the resource is to be made available to
the other waiting tasks. The highest priority task waiting to receive (. REC) the
synchronization word is then readied and gains unique control of the resource.
This task, in turn, captures the use of the resource until it unlocks the resource

by issuing an . XMT to the synchronization word, etc.

This technique requires that the locking facility be initialized before any tasks
use it. Initialization can be performed either by setting the synchronization word
initially to a non-zero value, or by having an initialization task issue an . XMT to
the synchronization word.

kosk ok ksk




CHAPTER 4

USER INTERRUPTS AND POWER FAIL JAUTO RESTART PROCEDURES

SERVICING USER INTERRUPTS

User devices may be identified either at the time an RTOS system is generated
(RTOSGEN time) or at run time. This chapter describes the procedure for
identifying a user device at run time, and describes the special considerations
applying to special, high priority user interrupt devices.

Upon detection of an interrupt request, the system will be dispatched through the
device interrupt vector table, .ITBL . In this table are pointers to Device Control
Tables (DCTs) for devices established at RTOSGEN time, whether system or user
devices. Procedures for writing a device driver for insertion in the system at
RTOSGEN time are given in DGC application note 017 -000006, User Device Driver
Implementation in the Real Time Operating System.

In order to identify a user device to the system at run time, the user must provide
a three-word DCT as an interface between the system interrupt dispatch routine

and the user-interrupt servicing routine. The structure and mnemonic assignments
of this three-word table are as follows:

Displacement Mnemonic Purpose
0 DCTSV Pointer to the state save area (an 8word
area).
1 DCTMS Interrupt service mask.
DCTIS Interrupt service routine address.

DCTSV is a pointer to an eight-word state variable save area used by the system to
store the PC, accumulators, carry, etc. DCTIS is a pointer to the routine which
services this particular device interrupt. DCTMS is the interrupt mask™ that the
user wants to be ORed with the current interrupt mask while in the user interrupt
service routine. This mask establishes which devices--if any--will be able to
interrupt the currently interrupting device.

* See "How to Use the Nova Computers, ' Section 2.4.

4-1



SERVICING USER ENTERRUPTS (Continued)

Upon transferring control to the user interrupt service routine, the system will
ensure that AC3 contains the return address required for exit from the routine,
and that AC2 contains the address of the DCT., (Caution: RDOS 4. 00 does not place
the DCT address in AC2.) Exit is accomplished by issuing task call . UCEX;

this call mav be issued in both single and multitask environments,

All multitask environment activity ceases at the moment a user device interrupt is
detected. Nonetheless, it is possible for a user to communicate a message to

a task from a service routine. I[f the task in question has been expecting such a
message through issuance of a . REC and is now in the suspended state, issuance

of the message via . IXMT will cause that task to be readied even though multi-

task activity is in abeyance. If no task has issued a . REC for such a message,
.IXMT simply posts the message and takes no further action. For more information
on communicating to tasks from a user interrupt service routine, see Chapter 3.

Identifying User Interrupt Devices (.IDEF)

In order to introduce to the system those devices (not identified at RTOSGEN time)
whose interrupts the system is to recognize, the system call .IDEF must be issued.
This call places an entry in the device interrupt vector table, .ITBL . Required
inputs to this call are the device code of the user device and the starting address

of this device's DCT. The format of this call is:

ACO - Device code of the user device.
AC1 - Starting address of the user device's DCT.

.SYSTM
.IDEF

error return
normal return

Possible error messages are:

AC2 Mnemonic Meaning
36 ERDNM Illegal device code (>77g). Device code 77g is
reserved for the power monitor/auto restart
option.
45 ERIBS Interrupt device code in use.

Exit from a User Interrupt Routine (. UIEX)

Upon a user device interrupt, AC3 will contain the return address upon entry to the
user routine and AC2 will contain the DCT address. To return from the user

4-2




Exit from a User Interrupt Routine (. UIEX) (Continued)

interrupt routine, AC3 and AC2 must be restored to the values they contained upon
entry to the routine, and task call, UIEX must be issued., (Caution: RDOS 04 will
execute this call correctly without the DCT address in AC2.)

The format of this call is:
AC2 - DCT address.
AC3 - Return address upon entry to routine.

.UIEX
Control returns to the point outside the user routine which was interrupted by the
user device. No errors are possible from this call. This call can be issued in a

single task environment., Rescheduling occurs only if a task state.change occurred,

Modifying the Current Interrupt Mask (.SMSK)

Whenever a user interrupt occurs, the interrupt mask is ORed with the mask
contained in DCTMS of the user DCT to produce the current interrupt mask.
Nonetheless, it is possible in the service routine to produce a current mask which
ignores the contents of DCTMS, producing a new mask which is the logical OR of
the old mask (upon entry to the service routine) and a new value. This is done by
task call .SMSK, whose format is as follows:

ACO - New value to be ORed with old mask.
AC2 - DCT address.

.SMSK

normal return

There is no error return possible from this call. This callmay be issued in a
single task environment. (Caution: RDOS 04 will execute this call correctly without

the DCT address in AC2.) ,
Remove User Interrupt Servicing Program (. IRMV)

To prevent the system's recognition of user interrupts which have been previously
identified by the . IDEF command, the .IRMV command is issued. Required input
to this call is the user device code corresponding to the device control table which
is to be removed. The format.of this call is:

ACO - Device code.

.SYSTM
JRMVY

error return
normal return



One possible error message may be given:

AC2  Mnemonic Meaning
36 ERDNM Illegal device code (> 77,) or attempt to remove
a system device ( i.e., one established at RTOSGEN
time).

POWER FAIL/AUTO RESTART PROCEDURES

RTOS provides software support for the power fail/automatic restart option. Upon
detection of a loss of power, the system transfers control to a power fail routine
which saves the status of accumulators O through 3, the PC and Carry.

When power is restored, if the console key is in the LOCK position, the message

“*POWER FAIL**

is output on the system console and the state variables are restored before control
resumes operation at the point where it was interrupted. If the console key was in
the ON position when input power failed, the user must set the console switches to
all zeroes (down) and START must be pressed when rower is restored. This causes
the console message to be output and state variables to be restored as when the key
is in the LOCK position.

The following system devices are given power-up restart service:

paper tape readers/punches
Teletypes

quad multiplexors

card readers

line printers

disks

Character devices may lose one or more characters during power up. Each card
reader may lose up to 80 columns of information on a single card. Line printers
may lose up to a single line of information. Since power up service for disks
includes a complete re-read or re-write of the current disk block, no disk
information is lost, although moving head disk units will require 30 to 40 seconds
before disk operations can continue. Devices requiring operator intervention (like
line printers, card readers, etc. ) must receive such action if power was lost for
an extended period of time. No power up service is provided for magnetic tape

Or cassette units.




POWER FAIL/AUTO RESTART PROCEDURES (Continued)

Power up service for special user devices (or for magnetic tape or cassette units)
must be provided by the user via the system call .IDEF . To use .IDEF for this
purpose, ACO must be input with 77g and AC1 must input the starting address of
the user power up routine. Exit from this power up routine is accomplished by
task call .UPEX, described below.

Exit from a Power Fail Service Routine (. UPEX)

Upon entering a user power fail service routine, AC3 will contain the address
required for exit from the routine. To return from the user power fail service
routine, AC3 must be loaded with this return address and task call . UPEX must
be issued.

The format of this call is:
AC3 - Return address upon entry to the routine.
. UPEX
Control returns to the location which was interrupted by a power failure. No

error return or normal return need be reserved. .UPEX can be issued in a
single task environment.

HIGH PRIORITY USER INTERRUPT SERVICE

As described in Chapter 6 and in Appendix B, special high priority interrupt
devices may be incorporated into an RTOS system at RTOSGEN time. The real
time clock and power fail /auto restart device are two such high priority interrupt
devices; users may also specify custom high priority interrupt service routines.

All high priority devices have entries in a high priority interrupt dispatch table,
-HINT . Entries in this table are scanned whenever an interrupt occurs, and only
if no high priority device has caused an interrupt will control branch through the
normal interrupt table, .ITBL . All other system devices, and user devices
announced at run time (via system call . IDEF), have entries in . ITBL .

Interrupts are disabled whenever high priority interrupt service is being performed.
Users writing high priority interrupt service routines must also conform to several
programming conventions. In general, these conventions are as follows:



HIGH PRIORITY USER INTERRUPT SERVICE (Continued)

1) Issue no task or system calls.

2) Save and restore accumulators and Carry if used by this routine.

3) Save the contents of location 0, and place a HALT instruction in
location O {optional).

The state of Carry and the contents of accumulators ACO through AC2 must be saved
within this routine if they are altered in this routine, and these state variables must
be restored before leaving the routine. AC3 is saved by the system in location . SAC 3
(a location within module INTD), and AC3 too must be restored before exit is accom-
plished even if the routine didn't use AC3. The contents of location 0 will contain

the return address needed for exit; this address should be stored in a user~-provided
location, e.g., RET, and a HALT instruction should be stored in location 0. This
practice is adhered to by RTOS to capture program control in the event of system
failure.

The final two instructions which must be executed when leaving a high priority
interrupt service routine are to enable interrupts and then to perform an indirect
JMP to the location containing the original return PC, e.g., RET . Control will
then pass to the next instruction which would have been executed had no high
priority interrupt occurred. The following instruction sequence accomplishes
these operations.

.EXTN ,SAC3

; RESTORE ACO, ACl1, AC2, CARRY

LDA 3 @ SAC3
INTEN
JMP @ RET
SAC3: .SAC3
RET: .BLK 1
.END

0 kR K

4-6

“«»w“ '



CHAPTER 5

MULTIPLE PROCESSOR SYSTEMS

MULTIPLE PROCESSOR PROGRAMMING

All features of RTOS discussed in previous chapters are available to systems with
two or more processors. Additional hardware support extended to multiple pro-
cessor systems by RTOS is in the form of a Multiprocessor Communications
Adapter (MCA), option 4038.

Data Transmissions

The type 4038 Multiprocessor Communications Adapter receiver/transmitter
(MCAR/MCAT) makes it possible for full duplex interprogram communications to
take place, in blocks of up to 8192 bytes, via the data channel, MCA support can
be given to a single processor in a multiple processor system so that an RTOS
program running in one processor can communicate with an RTOS program
running in another processor or with either a foreground or background program
running under RDOS in another processor. Each CPU may communicate with any
of up to 14 other CPUs.

Each MCA line corresponds to a file name of the following form:

MCAT:mm  or MCAR:nn
where mm represents a receiver unit number from 1 - 15 inclusive and where nn
represents a transmitter unit number in the range 0 - 15. Thus a four-CPU, RTOS-

only system would be logically configured with 10 separate lines if every possible
communications link were to be used.

[ ‘/(' Cf\

CPU L CPU
- -
CPU
#3

5-1




Data Transmissions (Continued)

If CPU #1 wanted to read from CPU #3, each unit would have to issue the following
sets of instructions:

Unit #1 Unit #3

. OPEN n ;OPEN MCAR:3 . OPEN n ;OPEN MCAT:1
.RDS n .WRSn

Note that units #1 and #3 are operating under distinct operating systems. Thus,
in the illustration on the previous page there is no correspondence between channel
n for unit #1 and channel n for unit #3.

If, in a receive request, unit number zero is specified to be the transmitter (e.g.,
MCAR:0), the receive request becomes generalized to indicate that any unit may
transmit to this receiver. Thus if unit #1 had three outstanding receive requests,
MCAR:4, MCAR:3, and MCAR:0, it could receive concurreént transmissions from
three sources: a transmission unit from unit #,a transmission from unit #3, and
a message from any other unit that chose to transmit to it.

A timeout can occur only in the MCA transmitter; the receiver can wait indefinitely.
The timeout period ranges from approximately 10 milliseconds to approximately
655 seconds. The default timeout, specified at RTOSGEN time, may be super-
seded by specifying a different timeout both when the transmitter is opened and
when the write sequential is issued.

Get the Current CPU's MCA Number (. GMCA)

It is possible to get the MCA unit number in the CPU which is currently executing a
user program. To obtain the unit number, system call . GMCA is issued. The
format of this command is as follows:

.SYSTM
.GMCA

error return
normal return

If the normal return is taken, the MCAunit number is returned in AC1. If the error
return is taken, the following error code will be input in AC2:

AC2 Mnemonic Meaning
36 ERDNM Device not in system (i.e., no MCA was specified

at SYSGEN time in this operating system).
5-2

S

Mg



MULTIPROCESSOR SYSTEM ILLUSTRATION

Consider the following application for a multiprocessor system. A large labora-
tory complex needs an automated system to control the environmental conditions
within the complex, to keep track of the number of personnel at locations through-
out the complex, and to monitor the complex for alarm conditions (alerting key
personnel when a condition cannot be corrected by the system itself). Moreover,
the system must be fail-safe, and can allow down-time for no longer than a few
seconds.

Such a system might well be configured along the lines suggested by the illustration
at the end of this section. Two master CPUs, a Dual NOVA system running under
RDOS, are connected in redundant fashion so that if one fails, the other detects
this failure and gains immediate control. The masters access a common data base
which contains, among other information, alarm messages and destinations to
which they should be sent in the event of an alert. Also contained in this file space
is a log of the current master's activity, so that if it should experience failure,

the alternate master CPU would have a record of recent events. An IPB connects
the masters so that they may access common disk files and so that one may act as
a watchdog on the other's behavior.

There are three slave CPUs, each of which monitors and controls various para-
meters within one zone of the building complex. Each slave is capable of monitor-
ing and adjusting both the humidity and the temperature of each zone. Additionally,
each slave keeps track of the positions of personnel within each zone. Finally,
each slave monitors its zone for the occurrence of alarm conditions, and it can
perform limited response to emergencies, e.g., it can activate a sprinkler system
if fire is detected. The functions performed by each slave are relatively simple
and could be performed by NOVA 2 computers running under RTOS.

Each slave has a high speed data channel line, MCAI through MCA6, to each of the

two master computers, so that continuous status reports can be generated by them

for transmission to CRT monitors via the Multiline Asynchronous Controller, MAC.
The MAC also has direct "hot lines' to key personnel (security guards, fire

station personnel, etc.) who should be alerted in the event of an emergency.

5-3



CRT
and
"Hot Lines"

\/
S

N

IPB
ML - M2
MCALl MCAG6
MCA2 CAS
MCA3 MCA4
sl S3
a a
b b
52
c c
a BER a
\“—““\/‘—_‘/ a b ¢ 4d 7
Zone 1 \ J Zone 3
Zone 2
a - temperature sensing and control M1 - Master CPU
b - census taking M2 - Back-up Master CPU
¢ - humidity sensing and control 51,82,83 - Slave CPUs
d - intrusion/fire/smoke alarm and control

(MAC1 through MCA6 depict software lines, not physical cabling.:

MULTIPROCESSOR SYSTEM ILLUSTRATION

R R

5-4




CHAPTER 6

SYSTEM ORGANIZATION

This chapter describes the collection of tables and fixed locations which are used by
programs running under the real time operating system. As described in Appendix
C, each user program supported by RTOS is loaded with an RTOS module generated
by the RTOSGEN program, followed by user-supplied RTOS drivers and the RTOS
system library. Loading itself is accomplished by means of the stand-alone or SOS
extended relocatable loader or the RDOS loader. At the completion of loading,
pointers and tables are found as illustrated in the RTOS Core Map shown on the
following page.

RTOS Page Zero

Locations O through 15 are reserved for use by the system and cannot be taken

by user programs. Location 0 receives the current PC upon each interrupt, and
location 1 contains a pointer to the system interrupt dispatch logic. This is usually
either .HINT, the high priority interrupt dispatcher, or .INTP, the regular interrupt
processor. These modules are produced by RTOSGEN.

When a task in RTOS is in the executing state, the CPU is said to be in User Mode.
Otherwise (as when RTOSis engaged in some system function like task scheduling)
the CPU is said to be in System Mode. Location 5, .SYS. , is a flag which is set
to zero when the system is in User Mode, and is set to non-zero in System Mode.
Interrupts in a real-time environment occur randomly. Since it is inappropriate
for certain interrupt-triggered system functions to be reentrant (e.g., task
scheduling) .SYS. serves as an interlock to prevent undesired entries into these
routines.

Location 2, BEGIN, contains a pointer to the RTOS initialization program. This
program is used to initialize stacks and clear switches in RTOS. The first section
of this routine zeroes system switches and intializes all device handlers. The
starting task is initially set to a priority of zero, the hardware interrupt mask is
made zero, the system is set in User Mode (.SYS. = 0), the real time clock is
started, and TCB chain pointers are initialized. The wait character logic,
activated by . WCHAR, is also reset.

The last operations performed by the initialization program are to enable the
interrupt facility by the INTEN instruction, and to jump to the start of the user
program (which must have been specified in an . END statement).

6-1



Page Zero
1

2 BEGIN

3 CTCB

4 SCHED

5 .5YS.

6 RLOC

7 IOEND
10 . CMSK
11 DISMISS
12 USTP
13 TLINK
14 RSCHD
15 . TSAVE
16 USP

17

20

Page One
400 UST

426
440

. TCBP
.UFPT
.DTBL

.PTBL
.QTBL
.MCTB
JHINT

L ITBL
.ETBL
.CHTB

RTOS Core Map

Contents
Interrupt service routine address.
Starting address for system initializer,
Address of currently executing task's TCB.
Entry point to task scheduler.

System mode indicator.

Page zero temporary.
Entry point to 1/0 end processor.
Current system interrupt mask.

Interrupt dismissal address.

Reserved for RDOS/RTOS compatibility; set to 400.

Entry point to routine linking ready TCB to TCB chain.

Entry point to reschedule the system.
Address of TCB state save routine.
User Stack Pointer (USP).

Entry point to system call processor.

First page zero location available to user program.
pag g

Start of User Status Table.

End of User Status Table.

Beginning of NREL area into which RTOS and user modules may be loaded.
The following global symbols may be present in the RTOS modules:

Start of TCB pool (total length = no. of TCBs*12
Start of User File Pointers Table, UFPT (total length = no. of channels *2).

Start of fixed head disk table, DTBL (total length = 1 + 5*number of disk

files defined at RTOSGEN time).

Start of moving head disk table, PTBL (total length =

files defined at RTOSGEN time).

Start of 4060 asynchronous multipiexor (QTY) table, QTBL (total length

= 1010*number of QTY lines).

Start of Multiprocessor Communication Adapter line table, (total length

= 7 + number of adapters in the network “14

Start of high priority dispatcher (length = 11, ot 3"number of high
t

priority interrupt devices),

Start of interrupt table, ITBL (64, 0 words long).
i
End (last location) of ITBL (user power fail handler, if present).
Start of device name table, CHTB (length = I1+4 "number of devices in system).

User program with user device drivers, if anvy.

RTOS device drivers.

RTOS system library modules,

6-2

- 6 number of disk

Nt



RTOS Page Zero (Continued)

Location 3, CTCB, contains the TCB address of the currently executing task. Location
4, SCHED, points to the main entry in the task scheduler. This entry causes the
highest priority ready task (if any) to be executed. Location 14, RSCHD, points to

an alternate entry in the scheduler. This entry links the currently executing task's
TCB to the ready chain, then transfers control to the entry pointed to by SCHED .

Location 6, RLOC, is a temporary location used by RTOS; location 7, IOEND, is
the entry point to the I/O end processor module. This routine is used to handle the
end of 1/0 operations for a device handler at either the interrupt or system level.
If while in this routine it is determined that another request is pending, the routine
will cause the next I/O operation on the device to be started. .CMSK, location 10,
contains the current system interrupt mask.

DISMISS, location 11, contains the interrupt dismissal routine address. USTP,
location 12, is reserved for use by RTOS FORTRAN, and points to the start of the
User Status Table (location 400). The value "0400" is also equivalent to a "JMP . "
instruction, so RTOS transfers control to this location whenever a system panic is
detected. System panics result from unknown system errors and are generally
unrecoverable; restarting at location 376 will restart the system provided the RTOS
program has not been damaged.

Location 13, TLINK, points to a routine which links a ready TCB to the ready chain.
This routine is entered by the system whenever a task is raised to the ready state.
RSCHD, location 14, contains the entry point to the task scheduler which links the
current TCB to the ready chain, then executes the highest priority ready task.
Location 15, . TSAVE, contains the address of the TCB state save routine.

Location 16 contains the User Stack Pointer, USP. This location is used by certain
high-level languages, among them FORTRAN IV, and is loaded into AC3 by RTOS

on return from system or task calls. * AC3 is destroyed whenever any such call is
issued, since it is equivalent to a JSR instruction. On return from a call however,
AC3 is loaded with the contents of USP. * Thus on NOVA systems and ECLIPSE
systems with TMIN, a convenient method of saving AC3 before issuing a call is to
first save AC3 in USP. AC3 will then be restored by the system upon returning from
the call. Furthermore, since USP is saved in the TCB as part of the state of a task
in execution, it may be used as the equivalent of an extra register by tasks without
stacks. '

*Unless RTOS is running on an ECLIPSE computer with BTMIN. See Chapter 1,
System and Task Call Formats.

6-3




User Status Table (UST)

The User Status Table (UST) is found at the start of NREL memory. This table is

2?8 words long, and contains information pertaining to the status of the user program,

Unused words within the UST are set to -1. The structure of the UST is as follows:
Displacement Mnemonic Contents
0 USTPC Maintained for RDOS compatibility only.
1 USTZM ZMAX, the lowest unused ZREL memory location.
2 USTSS The start of the symbol table.
3 USTES The end of the symbol table {(i.e., its lowest core
address).
4 USTNM NMAX, the lowest unused NREL memory location.
S USTSA The user program starting address.
6 USTDA The address of the debugger.
7 USTHU The highest address occupied by the user program
and RTOS upon completion of loading.
10 USTCS FORTRAN common area size.
11 USTIT Maintained for RDOS compatibility only.
12 USTBR Maintained for RDOS compatibility only.
13 USTCH Number of tasks (left half), number of channels
right half).
14 USTCT TCB address of the first user task to execute after
RTOS initialization.
15 USTAC Start of ready TCB queue.
16 USTFC Start of the free (dormant) TCB chain.
17 USTIN Start of user NREL program (set by the loader).
20 USTOD Reserved only for compatibility with RDOS.
21 USTSV Reserved for compatibility with RDOS.
22 USTSQ Start of suspended TCB queue.
23 USTXQ Start of the . XMTW /. REC queue.
24 USTPQ Start of internal system queue of tasks being ser-
viced (i.e., TCBs returning to base level after 1/0).
25 USTOS Scheduler idle counter (used in checking $PTR
timeouts).
26 USTNA Number of active tasks (TCBs in use).

The last word in the UST is also assigned the mnemonic USTEN.

6-4

% 5
S



Task Control Block (TCB) Pool

Given the asynchronous nature of tasks, the RTOS Task Scheduler must maintain
certain status information about each task. This information is retained within

a table called a Task Control Block (TCB), and there is one TCB for each task.
All TCBs are found in a series or pool following the User Status Table. TCBs
constructed for programs run on a NOVA computer are shorter by four words
than TCBs for programs run on an ECLIPSE computer. The following illustration
describes the structure of all TCBs:

Displacement Mnemonic Contents

0 TPC Carry in bit 0, PC in bits 1-15.

1 TACO ACO

2 TAC1 AC1

3 TAC2 AC2

4 TAC3 AC3

S TPRST Task status and priority.

6 TSYS System call word.

7 TLNK TCB link word (-1 if last TCB in the queue).
10 TUSP Task USP.
11 TELN FORTRAN IV variables save area address.
12 TID Task identifier.
13 TTMP Used to service . ABORT calls.
14 TKLAD Task kill address.
15 TSP Stack pointer (ECLIPSE computer only).
16 TFP Frame pointer (ECLIPSE computer only).
17 TSL Stack limit(ECLIPSE computer only).
20 TSO Overflow address(ECLIPSE computer only).

Word 5, the task status and priority, contains information describing the state of the
task, its priority, and whether it has any outstanding message transmit or receive
request:

TPRST: priority

0 1 2 9 15

Bit O is set to a 1 if the task is suspended due to an outstanding system call. Bit 1
is set to 1 if the task is suspended due to task calls . SUSP, .ASUSP, or .TIDS. Bit

2 is set to a 1 only if the task is suspended due to outstanding task calls . XMTW
or . REC. The task priority is contained in bits 9-15.

6-5




Task Control Block (TCB) Pool (Continued)

Word 6, TSYS, is used by RTOS in executing system calls., Word 7 contains the
starting address of the next TCB in the queue (the last TCB in a queue has a link of
-1, Word 12, TID, contains the task’'s 8-bit identifier in bits 9-15.

TKLAD contains the address which is to receive control upon a task’'s being killed,

if such an address has been defined via a . KILAD call. The remaining four words
contain stack state save information which is relevant only for ECLIPSE machines.
Nonetheless, these words are reserved for TCBs in all single task programs so

that programs such as utilities can be run on both the NOVA and ECLIPSE computers.

User File Pointers Table (.UFPT)

Following the TCB pool is a table called the User File Pointers Table (,UFPT). The
purpose of this table is to indicate what device or file is open on which RTOS
channels. The .UFPT consists of a series of two-word frames, one for each
channel defined for the RTOS system at RTOSGEN time. The first frame represents
the device (or file) opened on channel zero, etc.

The two-word frame will contain one of two sets of information, depending upon
whether it is a single- or multi-file device which is opened on the designated
channel. Frames for all devices contain the device DCT address in displacement
0. Displacement 1 for single-file device frames is unspecified. Displacement 1
of multi-file device frames, however, contains a pointer to a frame within a device
file table or within a device driver itself. Device file tables are discussed in the
following section. Frames within device file tables describe disk files, QTY lines,
or MCA units. Frames for cassettes and magnetic tape units point to unit control
tables for these units.

Device File Tables

One or more device file tables may follow the . UFPT., The following devices have
special device tables and have no entries in the standard device name table (,CHTB,
to be discussed later):

Device Table Name
fixed head disk . .DTBL
moving head disk .PTBL
asynchronous mux .QTBL
Multiprocessor Communications .MCTB
Adapter

6-6




Device File Tables (Continued)

Device Table Name
magnetic tape - MTUn
cassette . CTUE

The device file table established for fixed head disks is composed of a series of
five-word frames, one for each file defined at RTOSGEN time. Each frame
contains the name of the file and its contiguous disk block address boundaries. This
approach allows four-, five-, or six-character file names to be given to each disk,
fully compatible with contiguous disk files as defined in the real time disk

operating system, RDOS. Each frame in . DTBL has the following structure:

Displacement Contents
0-2 File name, left justified, trailing null
bytes.
.DTBL frame 3 Starting disk block address.
4 Ending disk block address.

The device file table for moving head disks (cartridge or pack) is similar to . DTBL,
but has one additional entry to describe the drive unit number:

Displacement Contents

0 Drive unit number.

1-3 File name, left justified, trailing null
.PTBL frame bytes.

4 Starting disk block address.

) Ending disk block address.

The 4060 asynchronous multiplexor driver (QTY) device table is named .QTBL .
This table consists of a series of ten-word frames with one frame reserved for each
QTY line; the first frame corresponds to line number 0, the second frame corres-
ponds to line number 1, etc. Each frame in .QTBL has the following structure:

6-7



Device File Tables (Continued)

.QTBL frame

Displacement

~ 0

CN U HE Lo N e

~J

W1l

Contents

Bit zero set if not opened; line number if
open.

Receive byte pointer.

Transmit byte pointer.

Read request TCB address.

Write request TCB address.

Read sequential limit; O if read line.
Write sequential limit; -1 if finished
writing; O if write line.

Character hold for echo during read line.
Line feed insertion flag (non-zero for
insertions).

Device characteristics:

DCKEY echo characters

DCPCK parity check/generation

DCLAC line feeds after carriage
returns.

The device file table for MCA lines is named .MCTB . This table consists of a
series of seven-word frames, each frame reserved for an MCA unit number; each
MCA line connects two MCA units (a transmitter and a receiver). The total
number of frames equals two times the number of lines defined at RTOSGEN time
plus one (for unit number zero reception requests). The first frame corresponds

to unit number zero, etc.

Displacement
0
1
2
3
.MCTn
4
frame -
5
6
AN

Each frame in . MCTB has the following structure:

Contents

List link.

Word count.

Current address.

Device code of the adapter at the other end
of the line; code is positioned as in the
MCA status words.

Error retry count.

TCB address of task issuing the read or
write request; -1 if no task is issuing
such a request. This word is set to zero
if the line is closed.

Device retry specification input in ACI to
.OPEN .

6-8

g



Device File Tables (Continued)

Line table entries are linked via displacement 0 of cach frame. Entries in the chain
correspond to MCA units which have MCA transmit or receive requests outstanding.

There are two kinds of unit control tables (UCTs) for magnetic tape and cassette
units. A truncated UCT is employed for units which will use only direct or unbuffered
1/0, and a standard UCT is used for units which are to utilize both unbuffered and

buffered 1/0.

Each standard UCT is found in a module entitled MTUn or CTUn. Each of these
modules contains a standard UCT followed by an octal 401 word buffer. If
unbuffered 1/0 is specified at RTOSGEN time, a module entitled SMTU or (SCTU
for cassettes) is loaded which contains 8 truncated UCTs, one for each possible tape

unit.

Each UCT has the structure described below; truncated UCTs contain only the first

three words of this structure:

Displacement

0
1

Contents

Current file number.
Status of unit:
+1: release of tape unit is in progress.
0: unit is not initialized.

-1: unit is initialized.

-2: initialization of unit is in progress.
Unit number of this UCT (truncated UCT ends here).
First byte address of buffer.

Size of buffer in bytes.

Input buffer byte pointer.

Output buffer byte pointer.
Number of bytes to be read.
Number of bytes written.

Pointer into user data area.
Counter governing user data area.

6-9




High Priority Interrupt Table (. HINT)

If any high priority interrupt devices were defined during system generation, one
of two high priority interrupt dispatch tables will be loaded. If only the power fail/
auto restart option was selected in the RTOS system, a truncated high priority
interrupt dispatcher will be placed after the last device file table; otherwise, the
full high priority interrupt dispatcher, .HINT, will be placed there. These
dispatch routines are illustrated on the following page. In essence, the operation
of .HINT is as follows. Each high priority interrupt device is examined to see if
it generated the interrupt. The power fail monitor is tested first, then the real
time clock, and then each of the other devices specified at RTOSGEN time in the
order that they were specified during system generation. If the source of the
interrupt is found, control is dispatched to its interrupt service routine; otherwise»
control is given to the ordinary interrupt dispatcher.

The format of the high priority interrupt dispatcher is as follows:

SKPDZ CPU ; CHECK FOR POWER FAIL INTERRUPT
JMP@ A ; YES. GO TO POWER FAIL INTERRUPT SERVICE.
STA 3@8B ; OTHERWISE, SAVE 3
INTA 3 ; AND GET INTERRUPT DEVICE CODE.
SKPDZ RTC ; WAS IT THE REAL TIME CLOCK?
JMP @ C ; YES. GO TO RTC INTERRUPT SERVICE
SKPDZ device ; WAS IT DEVICE 1?
JMP @ D ; YES, GO TO DEVICE 1 INTERRUPT SERVICE
; ETC.

SKPDZ devicep

JMP @ N ; GO TO DEVICE N INTERRUPT SERVICE, BUT IF
JMP @ . +1 ; NO HIGH PRIORITY DEVICE INTERRUPT
. INTD ; GO TO ORDINARY INTERRUPT DISPATCH ROUTINE
B: .SAC3
A PWRIS ; POWER FAIL INTERRUPT SERVICE ADDRESS
C: RTCIS ; RTC INTERRUPT SERVICE ADDRESS
D: DVI1IS ; DEVICE 1 INTERRUPT SERVICE
N: DVNIS ; DEVICE N INTERRUPT SERVICE.

6-10




High Priority Interrupt Table (. HINT) (Continued)

The power fail - only interrupt dispatcher looks like the following:

SKPDZ CPU ; POWER FAIL INTERRUPT?

JMP @ .+3 ; YES. GO TO POWER FAIL SERVICE

JMP @ . +1 ; NO, GO TO ORDINARY INTERRUPT DISPATCHER
INTP

PWRIS ; POWER FAIL INTERRUPT SERVICE ROUTINE

Interrupt Table (.ITBL)

One table which is always loaded is the interrupt table, .ITBL . .ITBL is a 64,4~
word table which has 64 one-word frames, one for every possible device code.

The first entry in the table corresponds to device code zero, the second entry
corresponds to device code 1, etc. Table entries corresponding to devices in the
system will contain the address of that device's Device Control Table (DCT). Move-
over, if the device is a system device, bit zero of this entry will be set to one; if
the device is a user device, bit zero will be reset to zero.

The last entry in this table, the entry for device code 77g, is named . ETBL. This
entry is reserved for a user power fail/auto restart handler address.

System devices will be initialized by the RTOS initialization program .RTOS. No
such initialization is performed for user devices. User device drivers must perform

their own initialization.

Standard Device Name Table (. CHTB)

The last RTOS table which may be loaded is the name table, .CHTB. This is a
table containing entries for single-file devices like the teletypewriter, paper tape
reader/punch, card reader, line printer, and plotter. This table is built at system
generation time, and consists of a series of four-word frames.

Device entries are listed in this table in the order that the devices are found in
.ITBL (i.e., order is by ascending device code). The first three words of each
frame contain the system name for the device, left justified and with trailing
nulls. The fourth word in each frame contains the base address of the device's
DCT. .CHTB is terminated with a -1.

6-11



Standard Device Name Table (. CHTB) (Continued)

Thus a typical . CHTB would have the following structure:

$ T
T I
null null
TTIDC
$ T
T O
null null
TTODC
o o~
o 7~
$ L
P T
1 null
LPT1IDC
-1

R R

% #




Call

APPENDIX A

RTOS COMMAND SUMMARY

ACO ACI

AC2

.ABORT

I.D. of task to be aborted.

.AKILL(U

Priority of tasks to be killed.

.SYSTM
. APPEND n

Byte pointer to device name. Device characteristics mask
(see .OPEN).

Channel number {if_r_a =77).

.ARDY(l)

Priority of tasks to be readied.

. ASUSP(U

Priority of tasks to be suspended.

.SYSTM
.CLOSE n

Channel number (if_r_1 =77).

. SYSTM
.DELAY

.DQTSK

I. D. of task to be dequeued.

.SYSTM
.DUCLK

Number of RTC ticks. Address of user interrupt
routine.

(
.SYSTM
.ERTN

Data word to be placed in
AC2,

LSYSTM
.GCHAR

bits 9-15: character.
bits 0-8: clear.

.SYSTM
. GCHN

(returned)
Free channel number

(1) No error return.
(2) No normal return.




Call ACO ACI AC2
(returned) {returnsad) (returned)
LSYSTM Day. Month. Year.
.GDAY
.SYSTM
.GHRZ 0: no RTC. ¢
1: 10 HZ.
2: 100 HZ.
3: 1000 HZ.
4: 60 HZ (line frequency)
3: 30 HZ (line frequency)
.SYST™ (returned)
.GMCA Unit number.
(returned) {returned) (returned)
.SYSTM Second. Minute. Hour (using a 24 -hr clock).
.GTOD
.SYST™M Device code. DCT.
. IDEF
(returned)
LIDST 0: ready. bits 8-15: task I.D. number.
1: suspended by .SYSTM call.
2: suspended by .SUSP, .TIDS,
. ASUSP.
3: waiting for .XMTW/.REC .
4: not used.
5: suspended by .SUSP, ASUSP, or
. TIDS and .SYSTM call.
6: suspended by . XMTW /. REC and
.SUSP, ASUSP, or .TIDS
7: not used.
10: killed.
L.SYSTM Byte pointer to device name. -1: full init,
JINIT O: partial init,
LSYSTM Device code.
IRMV
JIXMT Message address. Message (non-zero).




Call ACO ACI AC2
.KILAD Kill-processing address.
.KILL(D @
LS5YSTM HMA NMAX
.MEM
(returned)
.SYSTM NMAX increment or decrement New NMAX (after change).
.MEMI (2's complement).
Channel number (if n=77).
.SYST™™ Core data address, if a data bit 0: 1, even parity; (Status word or system error
.MTDIO n transfer. 0, odd parity. code if error return; status
word if read status normal
bits 1-3: return.)
0 read (words) 1BO: error.
1 rewind tape. 1B1: data late.
3 space forward. 1B2: tape rewinding.
4 space backward. 1B3: illegal command.
5 write (words). 1B4: high density or cassette
6 write EOF. if 1; low density if O.
7 read device 1B5: parity error.
status word. 1B6: end of tape.
bits 4-15: 1B7: end of file.
word or record count. 1B8: tape at load point.
If O on space command, 1B9: 9-track or cassette if
position tape to new file. 1; 7 -track if O.
1B10: bad tape; write failure.
1B11: send clock (0 if cassette)
1B12: first character
(0 if cassette).
1B13: write-protected or
write-locked
1B14: odd character (0 if
cassette).
1B15: unit ready.
LSYSTM Jyte pointer to tape Characteristic inhibit Channel number (if n = 77).
.MTOPD n file specifier. mask (see . OPEN). B
.SYST™M Byte pointer to file name 1B1: 80-column device Channel number (if n = 77).
.OPEND 1B2: lower-to-upper case
- ASCIL.
1B3: form feed on open.
iB4: full word device.
(continued on next page)

(1) no error return
(2) no normal return




Call ACO ACL AC2Z
iB6: LF after CR,
LSYSTM 1B7: parity check/
.OPENn generation.
(Continued) 1B8: rubout after tab,
- 1B9: null after FF,
1B10: keyboard input.
1B11: TTY output device,
1B12: no FF hardware.
iBl4: no TAB hardware,
1B15: leader/trailer.
("01" if user-specified
MCAT timeout),
.SYSTM bits 9~15: character
.PCHAR
(1) o s, R
. PRI bits 8-15: new task priority.
LQTSK Task Queue Table address.
.SYSTM Starting core address to Starting disk relative block bits 0-7: number of blocks
.RDBn receive data. number. to be read.
bits §-15: channel number
(itn=77). @
.SYSTM Byte pointer to user core area. Read byte count (including Channel number (if n = 77).
-RDLn terminator) at end of read.
.SYSTM Byte pointer to core buffer. Number of bytes to be read Channel number (if n = 77).
.RDS 1 {even for MCA) (if EOF detected, partial
byte count returned).
. RECU) Message address. Message.
.SYSTM
.RESET
.SYSTM Byte pointer to device name.
.RLSE
(3)
LSYSTM
CRTN

{1} no error return
{2) if error EREOF, error code in bits 8-15, partial read count in bits 0-7.
(3) no normal return

s



Call ACO ACH AC2
SYSTM
.RUCLK
LSYSTM
.SDAY § Day Month. Year.
.SM3K New interrupt mask to be ORed DCT zddress
!\ with old mask.
LSYST™ Second. Minute. Hour.
.STOD
.SUSP(I}
. TASK bits 0-7: task 1.D. New task entry point Message to new task.
bits 8-15: task priority. address
. TIDK bits 8-15: task I.D. number.
. TIDP bits 8-15: task I.D. number.
. TIDR bits 8-15: task I.D. number.
. TIDS bits 8-15: task I.D. number.

e

Any non-zero value if
rescheduling is to occur.

ol

Any non-zero value if
rescheduling is to occur.

DCT address

N S

Any non-zero value if
rescheduling is to occur.

(1) no error return.
(2) no normal return.
(3) return address is in AC3.




Call ACO AC1 AC2
LSYSTM -1, terminate wait request. Device code of keyboard
WCHAR bits 9-15: wait character. transmitting the wait char-
acter or -1 if wait request
terminated.
LSYSTM Starting core address. Starting relative block bits 0-7: number of disk
.WRBn number. blocks.
bits §-18: channel number
(ifn =77).
.SYSTM Byte pointer to core buffer. Write byte count, including Channel number (if n = 77).
.WRLn terminator, returned at end i
of write.
- 4
.SYSTM Byte pointer to core buffer. I\,ufnber of bytes to be right byte: Channel number
.WRS n written. f
2 (ifn=77).
left byte: # of MCA retries
(each retry takes
200 milliseconds).
XMT Message address. Message (non-zero).
XMTW Message address. Message (non-zero).




Code

0

21

22
23

24
26

27
30
31

ERROR MESSAGE SUMMARY

Mnemonic Meaning Applicable Commands

ERFNO Hlegal channel .APPEND .CLOSE ,OPEN
number, L.MTOPD  .MTDIO .RDB

.RDL .RDR .RDS
.WRB .WRL .WRS

ERFNM Hlegal file . OPEN .MTOPD |INIT
name.

ERICM Illegal system .RLSE LNIT .DELAY
command. .RENAM .DELET .CREAT

.CRAND ,CCONT

ERICD [llegal command .RDS .WRS .RDL

for device. .WRL .RDB .WRB
.MTDIO .GMCA

EREOF End of file. .RDB .RDL

ERDLE Attempt to refer .OPEN .MTOPD
to a non-existent
file or device.

ERFOP Attempt to refer- .RDS .WRL .RDL
ence an unopened .WRS .CLOSE .MTDIO
file or device. .RDB .WRB

ERUFT Attempt to use a .APPEND .GCHN .OPEN
channel which is .MTOPD
already in use.

ERLLI Line limit exceeded. .RDL .WRL

ERRTN Attempt to return .RTN .ERTN
(.RTN/.ERTN) from
current program.

ERPAR Parity on read line. .RDL

ERMEM Not enough memory .MEMI .RDL .RDS
available.

ERSPC Out of disk space. . vRB

ERFIL File read error. . RDS .MTDIO

ERSEL Unit improperly JNIT .OPEN .MTOPD
selected. .RLSE

A-7



Device not in sys-
tem, or illegal

Attempt to set
illegal time or

Message address
already in use.

Device code already

Simultaneous read or

write attempt on
same QTY line.

Bad information in
Task Queue Table,

Attempt to open a
busy MCA unit.

Task I. D. error.

Device timeout.

No complementary
MCA request.
Short MCA receive
Channel closed by

Task not abortable.

‘No MCA receive

Code Mnemonic Meaning
36 ERDNM
device code,
41 ERTIM
date.
42 ERNOT Out of TCBs.
43 ERXMT
45 ERIBS
in system.
47 ERSIM
50 ERQTS
60 ERFIU
61 ERTID
101 ERDTO
103 ERMCA
104 ERSRR
request.
106 ERCLO
another task.
110 ERABT
113 ERNMC
request.
115 ERXMZ

Attempt to trans-
mit a zero mes-
age word.

ok g o

. INIT
. IDEF

. STOD

. TASK
IXMT

.DUCLK

.RDL
. WRS

.QTSK

. OPEN

. TASK
. TIDS
. DQTSK

. WRS
.RDS

.RDS

.RDL
.WRS

. ABORT
. WRS

. XMT

Applicable Commands

.RLSE .IRMV
.GMCA ,STMAP
. SDAY

LXMT LXMTW
.IDEF LINIT
.RDS .WRL

. WCHAR

. TIDK . TIDR

. TIDP . ABORT
.WRS

.WRL .WRS
.RDS .WRL
LXMTW LV IXMT




APPENDIX B
GENERATING AND LOADING AN RTOS SYSTEM

DEFINITION OF TERMS

This appendix details the steps to be followed when creating an RTOS system tailored
to a specific device/core configuration and to the channel/task environment of the real
time program which will be supported by the system and user program, both in a disk
and in a non-disk environment.

System generation is the procedure followed to produce a relocatable binary which
will trigger the loading of appropriate device drivers from the RTOS library, allo-
cate tables and control blocks used by the system, and allocate a fixed number of
channels and task control blocks. The system generation program, RTOSGEN,
produces a relocatable binary with the default name RTOS. RB, by issuing a series
of questions about the hardware configuration and the task/channel requirements of
the user program.

System loading is the procedure followed to load the system generation relocatable
binary, user drivers if any, user relocatable binaries, and the RTOS library.
System loading is accomplished by using a relocatable loader.

PREPARATION FOR SYSTEM GENERATION

If the system is configured with either a type 4048 or type 4057 moving head disk
pack drive, it is necessary to format the disk pack using the appropriate formatter
program before system generation is attempted. In general, all disk packs that

are to be used in the system must be formatted prior to their use. Note that it is

not necessary to format the disk cartridges used in a type 4047 disk drive. The

disk pack formatter programs are stand-alone programs. The appropriate formatter
programs and their associated manuals are listed below:

Disk Pack Drive Formatter Program Manual
Type 4048 095 -000072 096-000039
Type 4057 095-000071 096-000038

SYSTEM GENERATION

The following page contains lists of tapes required to generate and load a system in
stand-alone and RDOS environments. To generate an RTOS program under the
Stand-alone Operating System (SOS), the RTOSGEN program itself must be con-
figured with appropriate device support before it can be used. Consult the Stand -
alone Operating System User's Manual, 093-000062, for the procedures to be
followed to configure and load SOS programs.

B-1



(To be supplied in an addendum to this manual)

List of Tapes for System Generation and System Loading

B-2




Loading RTOSGEN in a SOS or Stand-alone Environment

RTOSGEN is provided as a stand-alone program on paper tape for users wishing
to perform RTOS system generations without the support of RDOS. Standard
binary load procedures, described in section 2.8 of How to Use the Nova
Computers, must be followed to load either the stand-alone RTOSGEN program
or RTOSGEN run under SOS.

Loading RTOSGEN in an RDOS Environment

RTOSGEN is provided as a save file on paper tape for users wishing to perform a
system generation on an RDOS system. To load this save file, mount tape number
088-000082 in the reader, and type the following command to the CLI:

LOAD/V { gﬁ;})

The system will respond:

$TTR

LOAD {$P’I‘R}’ STRIKE ANY KEY.

Load the reader with the dump tape and strike any console key. The tape will be
read, and the teletype will respond:

RTOSGEN. SV

Producing the RTOS Module

You are now ready to begin executing RTOSGEN. This program configures the
system by interrogating you as to the hardware characteristics and channel/task
requirements of your program. If RTOSGEN is loaded using binary load procedures,
it will self-start. In an RDOS system, type the command

RTOSGEN )
to invoke the program.
The system generation program now outputs the message:
RTOS SYSTEM GENERATION
and proceeds to issue a series of questions requiring operator keyboard res}:&onses.
An improper reply to an RTOSGEN question causes the question to be repeated,

The questions are given and responded to in the following order unless stated
otherwise.

B-3



Producing the RTOS Module (Continued)

1.

CORE STORAGE (IN K WORDS)

Respond with any number from 4 (4K) to 32 (32K) in increments of 2 (2K}, and
follow this and all other responses with a carriage return.

RTC FREQ (0=NONE, 1=10HZ, 2=100HZ, 3=1000HZ, 4=LINE)

Respond with 0,1,2, 3, or 4 as appropriate. If you give a non-zero response,
the system will maintain the system clock and calendar. You are cautioned to
select the lowest acceptable frequency, since higher clock frequencies increase
system overhead. If the line frequency is requested, RTOS asks question 3;
otherwise, it steps to question 4.

LINE FREQ (0=50HZ, 1=60HZ)
Select O or 1 as appropriate. RTOSGEN now goes to question 4.
TASKS (1-255) ?

Respond with a decimal integer from 1 through 255 corresponding to the number
of tasks required by your program which will be loaded with the RTOS module.
If you select one task, the minimum task scheduler, TMIN, will be loaded from
the RTOS library; otherwise the multitask scheduler, TCBMON, will be loaded.

CHANNELS (1-63) ?

Respond with a decimal integer from 1 through 63, corresponding to the number
of simultaneously open channels required by your program.

After you have answered questions 1 through 5, RTOSGEN responds:
RESPOND WITH NUMBER OF UNITS

RTOSGEN now continues with a series of questions concerning peripheral
support given to your program.

DSK (0-1) ? (fixed head disks)

If you respond "0", the program steps to the next question; a response of "1"
prompts the following series of questions:

DISK STORAGE (IN K WORDS)

Respond with any decimal integer from 128 (K equals 102410) through 2048

(2 million words) in increments of 128 (128K). The program then queries you
about the file subdivisions and file names you may wish to assign to the disk
space for the fixed head disk. These queries are made in a series of questions
with three parts each:

S



Producing the RTOS Module (Continued)

1ST BLOCK?
END BLOCK?
NAME?

You respond with the first logical block address in each disk file; the first avail-
able block will be 0 unless you plan to use the disk bootstrap program, HIPBOOT,
to load and execute RTOS programs. If disk space for HIPBOOT is to be reserved,
the first available block address is block number6,

You must assign a file name to all disk space which you want to be program
accessible. The file names you define will be the names by which the disk
files are opened via the system . OPEN command. File names consist of
from 4 to 6 upper-case alphabetic and numeric characters. Each file name
must uniquely identify its associated file; the same block cannot be assigned
more than one file name, since one disk block cannot be included within the
file space of more than one file. Files defined during system generation
cannot be expanded or reduced in size. For a discussion of contiguous disk
files, see Chapter 1,"Disk File Organization.”

After defining all file space, respond with a carriage return to the "1ST
BLOCK'" question. RTOSGEN will now proceed to question number 7.

DKP (0-4) ? (moving head disks)

Respond with the number of moving head disk units in your system (the 4047B
is considered to be two units). If there are no moving head units, respond G;
the system will then proceed to question 8.

After you answer the unit number question affirmatively, the program requests
the number of sectors per surface in each unit, and the number of disk sur-
faces per unit ( see How to Use the Nova Computers for a discussion of disk
terms):

#SECTORS ?
# SURFACES/UNIT ?

Specify 6 sectors for the 4048 unit, or 12 sectors for either the 4047 or the
4057 units. Specify 2 surfaces for the 4047 unit, 10 for the 4048 unit, or 20
for the 4057 unit. ’

The program then queries you about the file subdivisions and file names you

wish to assign to the disk space for each moving head disk unit. These queries
are made in a series of questions with three parts each:

B-5



Producing the RTOS Module (Continued)

1ST BLOCK?
END BLOCK?
NAME?

You respond with the first logical block address in each disk file. The first
available block in each unit will be 0 unless you intend to run one or more RTOS
programs using disk file space found on an RDOS pack. In this case, file space
which will be accessed by RTOS must be allocated by an RDOS CCONT (.CCONT)
command. The LIST/E CLI command will then indicate the starting and ending
block numbers comprising the contiguous files; it is these numbers which you
would then use in responding to this RTOSGEN question series.

You must assign a file name to all disk space which you want to be program
accessible. The file names you define will be the names by which the disk

files are opened via the system . OPEN command. File names consist of from

4 to 6 upper-case alphabetic and numeric characters. Each file name must
uniquely identify its associated file; the same block cannot be assigned more than
one file name, since a single disk block cannot be included within the file space

of more than one file. Files defined during system generation cannot be expanded
or reduced in size. For a discussion of contiguous disk files, see Chapter 1,
"Disk File Organization. "

After defining all file space within each moving head unit, respond with a
carriage return to the "1ST BLOCK" question. RTOSGEN will now proceed to
question number 8.

8. MTA (0-8) ? (magnetic tape transports)

Respond with the appropriate integer indicating the number of 7- or 9-track
magnetic tape transports in your system. If your response is non-zero, go
to question 9; otherwise go to 10.

9. BUFFERED I1/0 (1=YES 0=NO) ?

Respond with the appropriate integer indicating whether line and sequential
(buffered) I/0 is to be available for magnetic tape units. A response of 1"
makes buffered 1/0 available for cassettes too if any are selected in question
10; a response of "0'" makes buffered 1/0 unavailable to both magnetic tape
and cassette units,

B-6




Producing the RTOS Module (Continued)

10. CAS (0-8) ? (cassette units)
Respond with the appropriate integer indicating the number of cassettes in
your system. If your response is non-zero, then step to question 11 unless
you have already responded to question 9. Any response given to question 9
will be applied to cassettes also.

11. BUFFEREDI/O (1=YES 0=NO) ?

Respond with the appropriate integers indicating whether line and sequential
(buffered) I/0 is to be available for cassette units.

12. PTR (0-2) ? (high-speed paper tape readers)

Respond with the appropriate integer indicating the number of high-speed
paper tape readers in your system.

13. PTP (0-2) ? (high-speed paper tape punches)
Respond with the appropriate integer indicating the number of high-speed
paper tape punches in your system.

14. LPT (0-2) ? (line printers)

Respond with the appropriate integer indicating the number of line printers
in your system. If your response is 1 or 2, the program asks you for the
column size(s) of your printer(s) with the query:

COLUMN SIZE (80, 132)
The query is repeated if you have specified 2 line printers in your system.
15. CDR (0-2) ? (punched or mark sense card readers)

Respond with the appropriate integer indicating the number of card readers in
your system.

16. PLT (0-2) ? (incremental plotters)

Respond with the appropriate integer indicating the number of digital plotters
in your system.

B-7




Producing the RTOS Module (Continued)

17,

18.

}.90

20.

21.

QTY (0-64) ? (asynchronous data communications multiplexor lines)

Respond with the appropriate integer indicating the number of full duplex
lines in your system.

TTYS (0-3) ? (teletypewriters or video displays)

Respond with the appropriate integer indicating the number of teletypewriters
or video display units in your system.

MCA (0-15) ?

Respond with the appropriate integer indicating the number of MCA lines in
your system (each line is capable of both transmitting and receiving). If your
response is non-zero, the program asks you for the default number of trans -
mission retries:

#TIMEOUT RETRIES (0-65535) 7

Each hardware timeout consumes approximately 10 milliseconds. After you

respond to this question, the program outputs a query signaling the approach
of the last block of RTOSGEN questions:

RESPOND WITH 0 FOR NO, 1 FOR YES

AUTO RESTART?

Respond "1" if the power fail/auto restart is included in your system; other -
wise, respond to "0".

HIGH PRIORITY INTERRUPTS?

Respond "1" if you have any user-written drivers whose interrupts you want

to be serviced before all system devices (but after the power fail monitor

and real time clock). Respond "0" if you do not have any high priority interrupt
devices. If you respond "1", the program will ask you for the name and device
code of each high priority interrupt device (the name consists of 3 alpha-
numeric characters):

DEVICE CODE?
NAME?

B-8




I ———

Producing the RTOS Module (Continued)

21.

22.

230

24,

HIGH PRIORITY INTERRUPTS ? (Continued)

The system appends "IS" to the device name and inserts the name into the high
priority interrupt table. After listing all high priority interrupt devices,
respond with a carriage return to the DEVICE CODE query, and the program
will then step to question 20.

USER SUPPLIED DRIVERS?

Respond "1" if you have any user-written drivers you want included in the
RTOS module output by RTOSGEN. (This is an alternative to introducing
drivers at run time by the system call .IDEF .) If you have no such drivers,
respond "0". If you respond in the affirmative, the program requests the
device code and name of each device (the name consists of 3 alphanumeric
characters):

DEVICE CODE?
NAME?

- The system appends "DC' to the device name to create the DCT name for the

device. After listing all user device drivers, respond with a carriage return
to the DEVICE CODE query, and the program will then step to the next
question.

COMPUTER: NOVA (0) OR ECLIPSE (1) ?

Respond "0" if the system will use a NOVA computer, or "1'" if you will be
using an ECLIPSE computer. Follow this response with a carriage return,
and the program will then proceed to output the system generation summary.

RTOS now outputs a list of all device codes, DCT names, and device names
for all system devices and user devices specified during the system
generation process. The power fail/auto restart option and high priority
user interrupt devices are not included in this list, since there is no DCT
associated with these devices.

After the list has been finished, the program asks whether the system gen-
eration procedure has been followed satisfactorily:

SYSGEN OKAY?

B-9



Producing the RTOS Module (Continued)

At this point you must decide whether or not there are any errors in your
selections of devices; if there are no errors, type "1"; otherwise type "0,
If you type "0" the entire System generation dialogue will be repeated.

If you respond "1, RTOSGEN will then ask the name of the file or device
which is to be used for outputting the RTOS module:

OUTPUT FILENAME?

Respond with the name of the appropriate file or device. Respond with a
carriage return if the default name RTOS.RB is desired.

RTOSGEN will output a 50-null leader (if the punch is used) followed by the
RTOSGEN module broper. After the RTOS module has been output under RDOS,
the system will output an R prompt and return to the CLI. RTOSGEN will restart
itself in a stand-alone program.

The following information, correct when this manual went to print, is given
as a guide for estimating the size in words of any tailored RTOS system for
either NOVA or ECLIPSE computers. Sizes are given in octal and exclude
page zero requirements:

NOVA system ECLIPSE system

Basic System: 1

Optigns: 2632 2642
multitasking programming 2) 1674 1674
each additional TCB 15 21
each additional channel
power fail/auto restart (PWRDR) 165 165
high priority interrupts (n = 11+3§ 11+3E

number of high pri(_frity
devices excluding RTC and PWR)
real time clock (RTCDR) 466 466

21) TMIN, SYSTE, INTD, RTIN, GENIO, IOSER, and one TCB
(2) TCBMON (less the size of TMIN), TXMT, TACAL, TSKID, TUMOD, TABOR,
and TQTAS

B-10




Producing the RTOS Module (Continued)

NOVA system ECLIPSE system

Peripherals:

fixed head disk (DSKDR) 213 213

moving head disk (DKPDR) 500 500

each disk file: fixed head/moving head 5/6 5/6

magnetic tape driver (MTADR) 54 54
each magnetic tape unit (MTUn) 414 414

cassette tape driver (CASDR) - 56 56
each cassette tape unit (CTUn) 414 414

tape service routine (MTSER); - 726 726
shared by MTADR and CASDR

buffered tape 1/0O package, i.e., 377 377
support for mag tape/cassette
.RDL/.RDS/. WRL/. WRS

teletypewriter driver (TTYDR) 347 347
each additional console (TTY1D, 101 101
TTY2D)

paper tape reader (PTRDR) 215 215
second paper tape reader (PTR1D) 45 45

paper tape punch (PTPDR) 54 54
second paper tape punch (PTP1D) 30 30

card reader (CDRDR) 646 646
second card reader (CDR1D) 170 170

line printer (LPTDR) 70 70
second line printer (LPT1D) 44 44

plotter (PLTDR) 53 53
second plotter (PLT1D) 30 30

device name table (. CHTB) 4*no. of 4*no. of

devices devices
1 type 4060 multiplexer (QTYDR) 764 764

each QTY line 12 12

multiprocessor communications 740 740
adapter (MCADR)
MCA device file table (. MCTB) 20*(no. of 20*(no. of

lines +1) lines +1)

B-11




This page illustrates a sample output listing of the RTOSGEN dialogue,

RTOS SYSTEM GENERATION
CORE STORAGE (IN K WORDS) 12

RTC FREQ (0=NONE, 1=10HZ, 2=100HZ, 3=1000HZ, 4=LINE) 4
LINE FREQ (0=50HZ, 1=60HZ) 1

TASKS(1-255) 7 10
CHANNELS(1-63) ? 8

RESPOND WITH NUMBER OF UNITS

DISK(0-1y 7 1
DISK STORAGE (IN K WORDS) 128

DISK FILE STRUCTURE
IST BLOCK? 5
END BLOCK? 200
NAME? FILEA
IST BLOCK? 201
END BLOCK? 506
NAME? FILEB
1ST BLOCK? 507
END BLOCK? 509
NAME? FILEC
1ST BLOCK? 510
END BLOCK? 511
NAME? FILED
DKP(0-4) ? 0
MTA(0-8) ? 0 ,
BUFFERED 1/0 (1=YES, 0=NO) I
CAS(0-8) 7 0
PTR(0-2) ? 1
PTP(0-2) 7 1
LPT(0-2) ? 1
COLUMN SIZE (80, 132) 80
CDR(0-2) ? 0
PLT(0-2) ? 0
QTY (0-64)? 0
TTYS(0-3)7 1
MCA(0-15)? 2
#TIMEOUT RETRIES (0-65535) ? 200

RESPOND WITH 0 FOR NO, 1 FOR YES

AUTO RESTART ? 1

HIGH PRIORITY INTERRUPTS? 0

USER SUPPLIED DRIVERS? 0

COMPUTER: NOVA (0) OR ECLIPSE (1) 7 O
SUMMARY OF RTOS SYSGEN

CODE DCT NAME
06 MCTDC

07 MCRDC

10 TTIDC $TTI
11 TTODC $TTO
12 PTRDC $PTR
13 PTPDC $PTP
14 RTCDC

17 LPTDC $LPT
20 DSKDC

SYSGEN OKAY? 1
OUTPUT FILENAME 7 SYS1
R
Sample RTOSGEN Dialogue

B-12




LOADING AND RUNNING A PROGRAM IN A STAND-ALONE ENVIRONMENT

Having produced the RTOS module, you are now ready to load the operating
system with program relocatable binaries and execute it as an RTOS program

or run it under RDOS. If you wish to load and execute it in a stand-alone environ-
ment you must first perform a stand-alone or SOS relocatable load.

Performing a Stand -alone or SOS Relocatable Load

For a complete description of operating procedures using the SOS and stand -
alone extended relocatable loaders, refer to the Extended Relocatable Loaders
Manual, 093-000080. The following summarizes stand-alone procedures
required for loading system and user programs.

The stand -alone relocatable loader is in absolute binary format, and thus it
is loaded by means of the binary loader. Once loaded, the relocatable loader
self-starts and types on the console:

SAFE=

You respond with a carriage return to reserve the upper 200 words of memory,
preserving both the bootstrap and binary loaders. The relocatable loader now
outputs the prompt:

You now proceed to load a series of paper tapes, following tape loading pro-
cedures which will be described. The order in which the first three categories
of tapes is loaded is not critical; the RTOS libraries must be the last items
loaded:

The RTOS module

User drivers (if any)

User relocatable binaries (the user program proper)
The RTOS libraries

e G0 BN e

To load each of the above paper tapes, mount each tape in turn in either the
teletype reader or the paper tape reader, and type either 1 or 2 indicating to
the loader whether the teletype reader (1) or the high-speed reader (2) is to
be used. After loading each tape, the loader outputs the star prompt (7).

B-13



Performing a Stand-alone or SOS Relocatable load (Continued)

After the last paper tape has been loaded, you may request a loader map by typing
the number 6. Then, to terminate the load process and prepare the program for
execution, type the number 8. This causes the previously loaded program to be
moved so that it resides at the absolute addresses indicated by the loader map.
After shuffling the program downward to its indicated positions in core Memory,
the loader halts.

If the SOS Magnetic Tape/Cassette relocatable loader (SOS loader) is to be used,
the core image loader/writer should first be loaded into main memory; the same
series of files must then be loaded in sequence. After the prompt

RLDR

is received, a command line must be input via the console. Suppose that cassette
files are used and three cassette transports are available. Moreover, the user
RTOS program binaries exist on file zero of one cassette, and the RTOSGEN
module, user drivers, and RTOS libraries exist on files 0, 1, and 2 of another
cassette. One possible command line would be as follows:

$TTO/L CTO:1/S CTI1:0 CT1:1 CT2:0 CTL:2 ,)»

This command line would cause a numeric symbol table listing to be output on
$TTO and the RTOS save file to go to file 1 of transport 0 (CBOOT, the cassette
bootstrap, exists on file 0). The RTOS module, user drivers user program
binaries, and RTOS libraries are then loaded in order. Upon the successful com -
pletion of the relocatable load, the message "OK' is output on the console and the
system halts with the loaded program in core memory ready to be executed.

Executing a Stand -alone Program

‘The first operation performed by any program run under RTOS is a system initial-
ization. Since the address of the RTOS initialization routine always resides in
location 2, control must be dispatched to the address in location 2 in order to start
an RTOS program. RTOS has a JMP @2 instruction at location 376. Thus to

start your program, place "376" in the data switches, press RESET, then START.

RTOS will initialize the system and transfer control to your program if you defined
a starting address in your program in the . END statement. If you defined no such
starting address, you must now place your program starting address in the data
switches and press START. Your program now runs until a HALT or JMP .instruc-
tion is encountered, or all tasks are killed (in which case control is returned to the
task scheduler).

B-14




LOADING AND RUNNING A PROGRAM IN AN RDOS ENVIRONMENT

After writing your program, you may test it as an RDOS save file, you may run it
on an RDOS system as a stand -alone program (disabling RDOS temporarily), or you
may output it as an absolute program on some external medium for execution on
another system.

Running the program under RDOS for test purposes may save you debugging time.
This procedure is equivalent to testing and running an RDOS save file, since the
RTOS command set is a compatible subset of the RDOS command repertoire. If
you wish to test your program under RDOS, consult the Extended Relocatable
Loaders Manual, 93-000080, and the Real Time Disk Operating System User's
Manual, 93-000075. Note that you may specify task/channel information either via
RLDR local switches /C and /K, orin the .COMM TASK statement.

Alternatively, you want to load your RTOS program using the RDOS loader but with
the RTOSGEN module and RTOS libraries, and execute your program on this RDOS
system or on another RDOS system. The following sections describe these pro-
cedures.

Loading an RTOS Program under RDOS

For a complete description of operating procedures using the RDOS relocatable
loader, refer to the Extended Relocatable Loaders Manual, 93-000080, and to the
Real Time Disk Operating System User's Manual, 93-000075. The following
summary information gives procedures for loading a user program with the RTOS
module under RDOS.

The following files are required for the relocatable loading process:

RTOS.RB (produced during RTOS system generation).
Userdrivers, if any.

User relocatable binaries (i.e., the user program proper).
The RTOS libraries.

a0 N

These four files must be loaded onto disk by mounting each on the teletype reader
or high-speed reader and by issuing the following command:
$PTR

$TTR} fﬂename)

XFER {

Having loaded all the necessary tapes, you now issue the CLI relocatable load
command:

B-15



Loading an RTOS Program under RDOS (Continued)

RLDR/Ct/Dq user binaries f user drivers3 RTOSGEN module RTOS libraries 4

STTO/L)|
$LPT/L /

This command will cause the complete save file to be constructed, starting at
location zero. The load map will be output on the listing device, if one is specified.

If in the above illustration you have loaded the debugger (global /D), you must do
one of two things to transfer control to the debugger. Your choice depends upon
the means selected to start the RTOS program. These means are described

fully in the following section. If location 2 will receive control upon the execution
of the save file, then the debugger address (found in the load map, DEBUG) must
be placed on location 2 via the Octal Editor. Alternatively, you may get the
debugger address from location 406 of the program's User Status Table and start
at that address. In either case, after starting the debugger, the command

" .RTOS$R" will transfer control to the RTOS initializer, starting the RTOS pro-
gram.

Executing an RTOS Program with HIPBOOT

Having performed a relocatable load of your program with the RTOS module and
RTOS libraries, you may now choose from many different methods to execute the
program; your choice of method will be made largely on the basis of the type of
system which will be used to run the program.

If you intend to execute the program on an RDOS system, you may use the disk
bootstrap program, HIPBOOT, to transfer control to your program. Otherwise,
you must produce an absolute binary paper tape, or a magnetic tape/cassette
version of the program and load it on another system by means of an appropriate
loader. If HIPBOOT is used, the computer halts at the termination of loading.
This provides an opportunity to activate the debugger via the front panel
switches, if desired.

If your program is to be executed on the present RDOS system or on another RDOS
system you may invoke the disk bootstrap program, HIPBOOT, to execute your
program. If the RTOS program is on a removable pack or cartridge you may
simply transfer the pack or cartridge to the new system; otherwise you must dump
the RTOS save file and reload it on the new system:




Executing an RTOS Program with HIPBOOT (Continued)

DUMP outputdevicename program-name. SV )

LOAD inputdevicename program-name. SV )

Having obtained a copy of the RTOS program on the RDOS system where it is to be
run, you now invoke HIPBOOT, following ordinary disk bootstrap procedures.
These procedures are described fully in the RDOS Reference Manual, Appendices
A and E; a summary of these procedures follows,

Disk bootstrap procedures vary with the type of computer used and the presence
or absence of the program load feature. The following three procedures are given.

1. NOVA®* 2/NOVA 1200/NOVA 800 series and ECLIPSE™ ** without
the Program Load Option:
a. Enter in location 376: 601nn
where nn=20 when bootstrapping from the fixed head disk and
nn=30 when bootstrapping from the moving head disk.
b. Enter in location 377: 377.
c. Press RESET, then start at location 376; go to step 3c.
2. NOVA 2/NOVA 1200/NOVA 800 series and ECLIPSE series with the
Program Load Option:
a. Set bit 0 of the data switches up.

b. Enter the proper disk device code (20 or 33 as described in
la.) into the data switches, bits 10-15.

c. Press RESET, then PROGRAM LOAD; go to step 3c.
3. SUPERNOVA®

a. Enter the proper disk device code (20 or 33 as described in 1a).
b. Press RESET, then CHANNEL START.

c. HIPBOOT now requests the name of your program.
FILENAME?
*NOVA and SUPERNOVA are registered trademarks of Data General Corporation,

Southboro, Massachusetts.
**ECLIPSE is a trademark of Data General Corporation, Southboro, Massachusetts.

B-17



Executing an RTOS Program with HIPBOOT (Continued)

You must now respond with the name of your program in one of two ways:
1. name/A )
N
2. name )

It you select the first method, your program will be loaded into memory and the
computer will halt. You then place a starting address (your program's or the
debugger's) into the address switches, press RESET, and then START. If you
select the second response, the program will self-start.

Having been loaded, if the RTOS program self-starts it will initialize the system
and transfer control to your program if you defined a starting address via your
program's . END statement. If the program does not self-start, you may start at
either the contents of location 2 or, to activate the debugger, at the contents of
location 406.

Since this procedure overwrites portions of RDOS, RTOS gains control; RDOS can
only be restored via disk bootstrap procedures similar to those given on the pre-
vious page.

Executing an RTOS Program with TBOOT, CBOOT or MCABOOT

If you wish to execute your program on a system which has a magnetic tape
transport or cassette unit, you must first transfer the magnetic tape bootstrap
(TBOOT) or cassette bootstrap (CBOOT) to file 0 of the tape on unit O.

w7

CT0

TBOOT.SV MTO:0
XFER { )
CBOOT. SV CTO0:0

After transferring the appropriate tape bootstrap to file 0, transfer the RTOS
program to file 1 of the same tape:

MTO:1
XFER program name. SV ’)
CT0:1

B-18




Executing an RTOS Program with TBOOT, CBOOT or MCABOOT (Continued)

If several RTOS programs are to be stored on the tape reel, they can be trans-
ferred to sequential file numbers following file 1.

Having produced the tape reel, release the reel via the RDOS command

{(MTO )
RELEASE 2 -

Dismount the reel, and mount it on the unit zero transport or cassette unit of the
system where the RTOS program(s) is to be executed.

After mounting the reel, perform one of the following operation sequences:

1. On machines having the Program Load feature (NOVA 2/800/1200
and ECLIPSE families), set the console switches to 100022 for a
magnetic tape transport, or 100034 for a cassette unit, and press
PROGRAM LOAD.

2. On SUPERNOVA computers with the Channel Start option, set the
console switches to octal 22 (for a magnetic tape unit) or octal
34 (for a cassette unit), and press RESET, then CHANNEL START.

3. On machines without Channel Start or Program Load options,
deposit NIOS MTA (60122) or NIOS CTA (60134) in location 376,
deposit 377 in location 377, press RESET, and START at
location 376.

The appropriate tape bootstrap program will be loaded into memory, and the
following initialization message will be output on the console:

FULL (0) OR PARTIAL (1) ?
Type "1" in response to this query, and the tape bootstrap will then request the

number of the file containing the program which is to be executed:

FROM gMTO:}

CTO:

B-19



Executing an RTOS Program with TBOOT, CBOOT or MCABOOT (Continued)

Respond with the number of the file containing the program, and follow this with
a carriage return. The tape file will be read, and control will be given to your

program,

To transmit an RTOS program from one CPU to another via the multiprocessor
communications adapter, two actions must be performed: one at the transmitting
RDOS CPU, and another at a receiving CPU. At the transmitting CPU, the fol -
lowing CLI command must be issued.

MCABOOT MCAT:m RTOS program name/S

where n is a number from 1 to 15 decimal denoting the receiving MCA unit
number. At the receiving CPU, an operator must have requested the sender’s
transmission by first placing "100007" in the receiver's data switches, then by
depressing RESET, followed by =~ PROGRAM LOAD. The transmitting unit
will wait for the receiver to request the transmission, up to the default timeout
period. After the RTOS program has been received, the receiving operator must
place the value "376" in the data switches, and then press RESET followed by
START,

EXECUTING AN RTOS PROGRAM VIA PAPER TAPE WHICH WAS PRODUCED UNDER
RDOS

If you have loaded your RTOS program via the RDOS relocatable loader, but now
wish to run this program in a stand-alone environment, you may output this program
onto paper tape. If you do not wish to preserve a disk file containing this RTOS
program, simply issue the command:

_ $TTP
MKABS/Z  program name. SV f 376/S7 { )
$PTP

Alternatively, if you wish to preserve a disk copy of this program before outputting
it onto paper tape, issue the commands:

MKABS/Z program name.SV program name.AB f{ 376/S
prog

XFER program name.AB $PTP )

‘The paper tape version of your program can now be loaded onto a non-RDOS
system following conventional binary load procedures. After loading the paper
tape, if you supplied the intializer entry with the /S switch, control will be

B-20

St



EXECUTING AN RTOS PROGRAM VIA PAPER TAPE WHICH WAS PRODUCED UNDER
RDOS (Continued)

transferred to the RTOS initializer; if you did not specify an initializer entry
address, you must place the value "376" into the data switches, press RESET,
then START.

In either case, after RTOS performs its initialization it will transfer control to
the starting address of your program if you specified a starting address as an
argument in the main program's . END statement. If you specified no such
starting address, the machine will stop after initialization and you must place
your program's starting address in the data switches, press RESET, then START.
Your program will now run until a HALT or JMP . instruction is encountered.

EXECUTING AN RTOS PROGRAM WITH THE SOS CORE IMAGE LOADER/WRITER

If the SOS core image loader /writer is to be used to execute an RTOS program,
one of two relocatable loaders must have been used and one of two corresponding
means must have been used to place the RTOS program onto cassette or magnetic

tape:

1. SOS relocatable loader (the core image loader/writer must have
been resident in main memory before the relocatable load).

2. RDOS relocatable loader.

If the first method is selected, the core resident RTOS program must be written
onto either a reel of magnetic tape or a cassette cartridge onto which the loader/
writer has been written as file zero. Core image loader/writer operation is
discussed in detail in the SOS User's Manual, 093-000062. In summary, to
transfer the SOS relocatably loaded program to tape, start the computer at the
next to last address in main memory. This will activate the loader /writer, which
outputs a prompt, "#". After outputting the prompt, the loader/writer waits for
you to input a device number and file number, separated by a colon, to which the
core resident program is to be written. After the file has been specified, the
core image writer will request specification of the upper core address (NMAX)
to be written onto tape. It does this by typing

NMAX:

on the console. You must then respond with the highest core address (in octal)
which is to be written out.

B-21



EXECUTING AN RTOS PROGRAM WITH THE SOS CORE IMAGE LOADER/WRITER
(Continued)

Having written the RTOS program onto tape, it then may be read in from tape and

be executed by means of the core image loader. Set the console data switch 0 up,
and activate the core image loader by starting the computer at the highest available
memory address. The loader issues the "#" prompt on the console, and then awaits
your response of a device number (0-7),colon, and a file number (0-99) followed by
a carriage return. The indicated tape file is then loaded into memory starting at
address zero. The loader will halt after loading is complete.

If instead of the SOS loader the RDOS relocatable loader is used to create the RTOS
program, this save file can be XFERed by the CLI to a file on cassette or magnetic
tape. This file can then be executed by means of the core image loader as des-
cribed above.

The illustration on the following page summarizes the various methods which may
be used to execute an RTOS program. The illustration starts with the relocatable
binary modules comprising the program; these binaries are produced either by an
RDOS assembler or by the SOS assembler.

B-22




Stand -alone

RTOS

Binarie

508
Relocatable

Extended "RLDR/CY B
Relocatable Loader RLDR...
4 Loader ‘ "

Core-resident Core-resident program.SV program.SV

RTOS program disk file e

RTOS program (SOS loader /writed] (following RTOS disk file
resident) conventions)
1
"program”’
Write to tape
with SOS
loader fwriter "MKABS/S" Execution
to under
program. AB RDGS
"XFER" |
TBOOT (CBOOT)
or SOS loader/ "MK ABS"
writer, and ©
program. SV $PTP
program. AB
"BOOT" disk file
(HIPBOOT) "XFER" —
or to
"MCABOOT" .

magnetic tape
or
cassette file

\

SOS
loader /writer

TBOOT
(CBOOT)
partial

initialization

Program
Relocatablg

Execution
under
RTOS

s

absolute binary
paper tape
program

/

binary
loader

RTOS Execution Procedures

ok R EOR

B-23

& SPTP



APPENDIX C
RTOS PARAMETERS
Supplied with RTOS is a set of parameters, PARR, which must be assembled with

programs using RTOS and using system-defined mnemonics. A listing of these
parameters begins on page C-2.



2021
21
22
23
24

LICENSED MATERIAL = PROPERTY OF DATA GENERAL CORPORATION
LMAIN MACRO REV 23,20

222000

200000
177777
177776
177775
177774
177773
177772
177771

022921
@oavee
2ogeed
20021¢2
Q00022
2902042
0002102
220200
220400
2210282
202029
2040200
210200
220000
Q42229

R T R R TR T T

RRRRR

R R
R R
RRRRR

R R
R R
R R

THE OPERATING

s

TTTTTTY Q000 5888 ;
T 8] 0 8 § ;

7 s 0 S ;

T 9] o §888 i

T 0 0 S H

T o] o] S S H

T 0000 5888 ;

H

;

1d:l6:26 22/25/77S

SYSTEM YOU CAN UNDERSTAND
EAK KA KA KA KKK I A KA KA AR KA IR KA IR KK A KA KA AR KA KA R KKK Rk Ak & ]

ﬁ*i*******ﬁ**ﬂ****t**i*********’k***t*t*ﬁ****’:ﬁﬁt*******;

; RT0S = = REAL TIME QOPERATING SYSTEM
; = = FOR THE DATA GENERAL FAMILY OF COMPUTERS

F4Sw=2

;7 DEFINE THE USER STACK

.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR

7 .DUSR

.DUSR
«DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
7 .DUSR

SSAC?2
SSACH
SSACQ
SSCRY
SSEAD
SSRTN
SSOSP
SSLGT

LL O O O E RN E I T 1)

*x%xx RT0S PARAMETER TAPE xxxx
FORTRAN 4 CONDITIONAL ASSEMBLY SWITCH

7 SUPERSEDED BY FORTRAN IV PARAMETERS IF PRESENT

4

SSAC2=1
S8ACI=1
SSACR=-1
SSCRY=1{
SSEAD=1
SSRTN=1{
S80SP=1

DISPLACEMENTS

we we e e e we e we

(DON'T MODIFY THIS DISPLACEMENT)
SAVE FOR CALLERS' ACCUMULATORS

CARRY

ENTRY ADDRESS OF CALLED PROGRAM

RETURN ADDRESS 7O CALLING PROGRAM

PREVIOUS STACK POINTER

VARIABLE LENGTH OF CALLING PROGRAMS!' FRAME

7 DEVICE CHARACTERISTICS

LY

0CCPO=
DCCGN=
DCIDI=
DCCNF=
pC10=

DCKEY=
DCNAF=
DCRAT=
DCPCK=
DCLAC=
DCPFR=
DCFwD=
OCFFQ=
DCLTU=
DCCee=

LR

1B15S

1815
1814
1813
1812
1811
1812
1809
1808
1807
1Boe
1BES
1824
1823
18@2
1Bgy
1B@

WE NE NE Ne Ne Me ME e e e e e % Ne e A %e we e

IF SUPPRESSED ON OPEN:

USER SPECIFIED TIMEOUT (MCA),

REQGUIRES LEADER/TRAILER

REGUIRES TAB SIMULATICON

BUF 'D INPUT DEV, (RDOS: OP, INTERV.)
QUTPUT DEV, WITHOUT FORM FEED HARDWARE
TELETYPE QUTPUT DEVICE

KEYBOARD DEVICE

REGUIRES NULLS AFTER FORM FEEDS
REQGUIRES RUBOUTS AFTER TABS

REQUIRES PARITY CHECK

REQUIRES LINE FEEDS AFTER C,R,'S
INTERNAL TO RT0S: AUTORESTART MODE BIT
INTERRUPT PER FULL WORD I/0 DEVICE
REQUIRES FORM FEED ON OPEN

CHANGE LOWER CASE ASCII TO UPPER

WRITE 8@ COLUMNS

DEVICE WITH BEAD GQUEUE

(INTERNAL TO RTOS, NON-PARAMETRI?)



ivegae
21
@z
23

LICENSED MATERIAL
SMAIH

2004290
202320
222021
293922
22202023
aeaegd
222925
220806
2000827
quoele
gaea1t
Joeete
222213
2g@s14
ageatls
220016
200017
200229
292221

220022
2220223
290224
202825
200026
202026

220900
2ee2021
200202
200023
A200024
220885
220206
veeve7
202910
200011
2e@e1e
200013
Bo2e1d
22015
Q22216
gege17
020029

200215
200921

- PROPERTY OF DATA GENERAL COKPURATIONM

3 USER STATUS TABLE (UST) TEMPLATE

.DUSR
s DUSR
s DUSR
sDUSR
«DUSR
. DUSR
.DUSR
»DUSR
»DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
1

.DUSR
.DUSR
<DUSR
.DUSR
.DUSR
.DUSR

UsSTs=

USTPL=
UsTZM=
USTS8S=
UsSTES=
USTNMz
USTSA=
USTDA=
USTHU=
USTCS=
UsSTIT=
USTBR=
USTCH=
U8TCT=
USTAC=
USTFC=
USTIN=
UsT0D=
USTSv=

UsTSG=
UsSTx@s=
USTPG=
UST0S=
USTNA=
USTEN=

;7 LAYOUT OF AN

.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR

TPC=¢
TACQ=1
TACi=2
TACZ2=3
TAC3=4
TPRST=S
TSYS=¢
TLNK=7
TUSP= 1@
TELN=11
TiD=t2
TTMP=13
TKLAD=14
TSP=15
TFP=16
T8L=17
T80=22

4z
2
i
2
3
4
5
&
7

1@
11
1e
13
14
15
16
17
2¢
21

22
23
24
25
26
26

RTO

" WME Me Me We We We e Wa e Wa W@ we We WE Wa e

’

;7 DEFINE NON=BIRD
+ODUSR TLN=TKLAD=TPC+1

3 DEFINE BIRD TCB LENGTH
+DUSR TLNB=TSC=TPC+!

START OF USER STATUS AREA
RESERVED FOR RDOS COMPATIBILITY
IMAX :

START OF SYMEQL TABLE

END OF SYMBOL TABLE

NMAX

STARTING ADDRESS

DEBUGGER ADDRESS

HIGHEST ADDRESS USED

FORTRAN COMMON AREA SIZE
INTERRUPT ADDRESS (NOT USED)
BREAK ADDRESS (NOT USED)

# TASKS (LEFT), # CHANS (RIGHT)
INITIAL TCB ADDRESS

START OF READY TC8 GQUEUE
STAKT OF FREE T7CB CHAIN

INITIAL START OF NREL CUDE
RESERVED FUR RDOS COMPATIBILITY
FORTRAN STATE SAVE ROUTINE (OR &)
==RD0S UST ENDS HERE==

START OF SUSPEND QUEUE

START OF .XMT/,REC QUEUE

START OF PSEUDO TASK GQUEUE
{=SECOND CLOCK, SCHEDULER IDLE COUNTER
NUMBER OF ACTIVE (LIVE) TASKS
LAST ENTRY

2

e WK e Ne wa e wa me N W We Wl e e wa wa es e

e we wa we e wa

S TASK CONTROL BLOCK (TCB)

USER PC + CARRY

ACp

ACt

AC2

AC3

STATUS BITS + PRIORITY
SYSTEM CALL WORD

LINK WORD

Usp

TCB EXTENSION ADDR(USED BY FORTRAN SCHEDULERS)
TASK ID ENTRY

RDOS REYV 3'S CONTRIBUTION
KILAD ROUTINE ADDRESS
STACK POINTER

FRAME POINTER

STACK LIMIT

OVERFLCW ADDR

TCB LENGTH



LICENSED MATERIAL - PROPERTY 0OF DATA GENERAL CORPORATION
§2883 (MAIN

21 i INTERRUPTED MACHINE STATUS STORAGE BLOCK LAYOUT

22

23 233220 .DUSR IPCC= 2 i PROGRAM COUNTER AND CARRY

24 ag23e1 ,DUSR IACg= 1 ; ACCUMULATOR STORAGE

@25 Q%2282 .DUSR IACL= 2

26 222223 ,DUSR IACe= 3

27 209234 ,DUSR 1AC3s= 4

28 222925 ,DUSR ICMSK= 5 3 CURRENT HARDWARE MASK

a9 222206 .DUSR IRLOC= & 7 RLOC

12 200227 LDUSR ISVLN=  IRLGC+! ; SAVE AREA LENGTH

11

12 5 FIXED LOCATION PAGE ZERO STORAGE (LOCATIONS 2=17)

13

14 H e 4 7 INTERRUPT PC STORAGE

15 7 s ! ; INTERRUPT SERVICE ROUTINE ADDRESS

1e 222222 LDUSR BEGIN= 2 i OVERALL STARTING ADDRESS (FIXED AT 2)
17 222203 ,DUSR C7CB= 3 7 CURRENT TCB ADDRESS==INITIALLY HAS

18 i; STARTING ADDR FOR TBOOT USE (FIXED
19 i AT 3D,

2e 222224 ,DUSR SCHED= 4 7 ENTRY POINT 7O SCHEDULER

21 2282085 .DUSR .SYS,= 5 5 SYSTEM MODE INDICATOR

22 77 (INITIALLY @ FOR HIPBOOT)

23 2990226 .DUSR RLOC= & i PAGE ZERO TEMP (=6 FOR COMPATIBILITY)
24 222227 LDUSR ICEND= 7 7 ENTRY POINT 70 1/0 END PROCESSOR

25 294012 LDUSR .CM8K=z  1p 7 CURRENT SYSTEM INTERRUPT MASK

26 02e211 .DUSR DIsmMIsSS=11 7 INTERRUPT DISMISSAL ROUTINE ADDRESS
27 222212 .DUSR USTpP= 1e 7 DEFINED FOR COMPATIBILITY, SET 710 4@
28 220212 .DUSR PANIC= USTP i SYSTEM PANIC (CONTAINS JMP ,)

29 290213 ,DUSR TLINK= 13 7 ENTRY POINT TO ENGQUEUE READY TCB

30 920214 ,DUSR RSCHD= 14 7 ENTRY POINT TO READY (CTCB), SCHEDULE
31 202215 ,DUSR .TSAVE= 15 ; ADDRESS OF 7TCB STATE SAVE ROUTINE

32 i .DUSR USSPz 16 ;7 USER STACK POINTER

33 i see 17 i ENTRY POINT TO SERVICE SYSTEM REQUEST
3y

35 ;7 BIRD SPECIFIC LOCATICNS

36 222242 .DUSR SP= 49 7 STACK POINTER

37 22241 .DUSR CSP= 41 i FRAME POINTER (LOGICAL STACK POINTER)
38 228042 .DUSR CSL= 42 7 STACK LIMIT

39 290243 ,DUSR Cs0= 43 7 STACK OVERFLOW ROUTINE POINTER

4 200044 .DUSR Xx0PA= d4d4 7 XOP ORIGIN ADDRESS

41 @22845 .DUSR FPFA= 45 ;7 FLOATING POINT FAULT ADDRESS

42

43 i SYSTEM CONSTANTS

44

45 2002204 .DUSR SCLLG= 132, 7 MAX LINE LENGTH FOR LINE MODE



LICENSED MATERIAL - PROPERTY OF DATA GENERAL CORPORATION
19284 MAIN

21 3 DEVICE CONTROL TABLE (DCT) TEMPLATE

2

23 20220292 .DUSR DCTSv= 2 ; INT STATE SAVE ADDR

24 222201 LDUSR DCTMS= H ; MASK OF LOWER PRIORITY DEVICES
25 #2@¢9@2 ,DUSR DCTIS= 2 ; INTERRUPT SERVICE ADDR

26 229923 ,DUSR DCTCH= 3 ;7 DEVICE CHARACTERISTICS

27 222904 ,DUSR DCTCD= 4 ; DEVICE CODE

28 2299285 .DUSR DCTEX= S ; WHERE TO EXECUTE I/0 INSTRUCTION
29 9822026 ,DUSR DCTDT= 6 ; COMMAND DISPATCH TABLE ADDRESS
12

11 ; DEFINE THE COMMAND OFFSETS

12 290002 .DUSR OF = 2 ; OPEN A FILE

13 2020021 .DUSR CF= 1 ; CLOSE A FILE ¢

14 g2geae .DUSR RS= 2 3} READ SEQUENTIAL

15 2op2e3 .DUSR RL= 3 ;3 READ LINE

i6 2922024 .DUSR W3= 4 3 WRITE SEGQUENTIAL

17 gogees .DUSR wWl= S i WRITE LINE

18 geaeee .DUSR RB= 6 ; READ BLOCK

19 @gvea7 .DUSR WB= 7 i WRITE BLOCK

20 0ge212 .DUSR OA= 12 ; OPEN FILE FOR APPENDING
21

22 220927 .DUSR DCTST= 7 7 DEVICE START ROUTINE

23 220212 .DUSR DCTIN= 1e 7 DEVICE INITIALIZATION ROUTINE

24 220211 LDUSR DCTLK= 11 3 FORWARD TCB LINKAGE

25 920912 .DUSR DCTTO= 12 ;7 TIMEOUT CONSTANT OR ZERQ

26 298213 ,DUSR DCTDe= 13 ;7 DISPLACEMENT TO 2ND PART OF DCT
27

28 ; THE REMAINING DEFINITIONS ARE FOR BEAD DEVICES ONLY,

29

30 020213 .DUSR DCTGL= 13 7 LINK IN DEVICE REQUEST BEAD CHAIN
31 @00014 .DUSR DCTDP= 14 ; DEVICE BYTE DATA POINTER

32 022015 .DUSR DCTDC= 15 ;7 DEVICE DATA COUNT

33 gpeo1e .DUSR DCTES= 16 ; BEAD STATUS wORD

34

35 22020817 .DUSR DCTBD= 17 ; BEAD ADDRESS (,.=4)

36 2¢@02¢ .DUSR DCTGP= 2e ; REQUEST BEAD QUEUE STARTING ADDR
37 220821 .DUSR DCTOC= 21 ; OPENED DEVICE CHARACTERISTICS

38 2@e222 .DUSR DCTTi= 22 ; TEMP 1 FOR DEVICE CONTROL

39 @g2223 .DUSR DCTTe= 23 3 TEMP 2 FOR DEVICE CONTROL

48 222824 JDUSR DCTCT= 24 ; CURRENT TIMEQUT COUNT (INPUT DEVICE)
41 @o0024 ,DUSR DCTCC= 24 ; COLUMN COUNTER (QUTPUT DEVICE)
42 B@0@g25> LDUSR DCTPR= 25 ; ECHC DEVICE PAIR POINTER (TTI ONLY)
43 200025 .DUSR DCTLC= 25 ; LINE COUNTER (OUTPUT DEVICE)

44 ; =FOR SPECIAL OUTPUT MODE:

45 220026 .DUSR DCTSC= 26 ;' SAVED DEVICE REQUEST BYTE COUNTER
46 200027 .DUSR DCTGN= 27 ;7 CHARACTER FOR GENERATION



LICENSED MATERIAL = PROPERTY OF DATA GENERAL CORPORATION
19285 ,MAIN

21 ;i BEAD COMPONENTS

@22

23 202022 .DUSR RGLK=z e ; REQUEST LINK

25 222202 ,DUSR RQECNT= 2 ; REQUEST BYTE COUNT

26 2020203 .DUSR RGST= 3 ; REGUEST STATUS (MODE)

a7

28 i STATUS/MODE BITS ARE DEFINED AS FOLLOWS:

29 H

ie ; 1Bg BEAD IN DCT (MAIN BEAD), ASSOCIATED WITH TCB aDCTLK
11 ;3 181 PRESERVE TASK'S AC1, DON'T CALCULATE BYTES TRANSMITTED
12 i 1B15 MEANING DEPENDS ON BIT ¢ -

13 ; MAIN BEAD: LINE MODE

14 ; OTHER BEAD: REQUEST DONE (CLEARED IN ENQUE ROUTINE)
15

16

17

18

19

2e ;7 CFFSETS FOR USER TASK QUEUE TABLE

21

22 220002 .DUSR QPC= e ; STARTING PC

23 200021 .DUSR GNUM= 1 ; NUMBER OF TIMES TO EXECUTE

24 222002 .DUSR QTOvV= 2 ;7 OVERLAY NUMBER (RDOS)

25 202223 .DUSR QSH= 3 ; STARTING HOUR

26 222024 .DUSR Q@Sms= 4 ;i STARTING SEC IN HOUR

27 222025 .DUSR QPRI= TPRST 7 MUST BE SAME

28 202026 .DUSR QRR= 6 ; RERUN TIME IN SECONDS

29 202007 .DUSR QTLNK= TLNK ;7 MUST BE SAME

39 220012 .DUSR QOCH= 18 ;7 CHAN OVERLAYS OPEN ON (RDOS)

31 2008011 .DUSR QCOND= 11 7 TYPE OF LOAD

32 2og@212 ,DUSR GLDST= 12 ;7 LOAD STATUS (RDOS ONLY)

33 i 1B@=LOADING, 1B1S=DEQUE REQ REC
34 200213 ,DUSR QTLN= QLDST=QPC+1

C-6




10806 MAIN

21
22
23
24
25
26
27
28
z9
12
i1
i2
13
14
15
16
17
18
i9

2020223
2g2003
@geaald
aegee7
goee17
2ege17
202¢1e
288217
2ee217
228617
282717
221717
201737
201777
Bo1777
2e1777

- ww

.DUSR
+DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
,DUSR
LOUSR
.DUSR
,OUSR
.DUSR
.DUSR
.DUSR
+DUSR
.DUSR

RDOS REV 3 VERSION

MKTTC=
MKITI=
MKGTY=z
MKPTP=
MKMCAz
MKPLT=
MKLPT=
MKDPO=
MKDPI=
MKDKP=
MKDSK=
MKIPB=
MKPTR=
MKCDR=
MKMTA=
MKCAS=

1B14+1B1S
MKTTO
MKTTI
1BI3+MKTTI
1B12+MKPTP
MKMCA

1@
1B28+MKMCA
MKDPO
1B@7+MKDPOD
1B@G+MKDKP
1BR6+MKDSK
1B11+MKIPB
1B1@+MKPTR
MKCDR
MKMTA

LICENSED MATERIAL = PROPERTY OF DATA

DEFINE THE DEVICE MASK BITS

W W R WA We R M M e M e e wE %R e e

710
TT1I
g7y
PTP
MCA
PLY
LPT
DPC
DPI
MHD
FHD
IPB
PTR
COR
MTA
CAS

GENERAL CORPORATION

(SPECIAL CASE)



1gege7

21

LICENSED MATERIAL = PRUPERTY OF DATA GENERAL CORPORATION

JMATN

2eego0e
2eedot
20e20e
290223
2900026
ggeaie
220815
20022
eogee!
egeece
220923
2000224
292826
2geez7
220030
202031
200036
2g¢0e41
290842
2¢0043
290045
20eau7
ogvese
2002060
002061
po2101
200103
2001024
Q220106
082119
200113
080115

; DEFINE THE

.DUSR
LDUSR
LDUSR
.DUSR
+DUSR
.DUSR
.DUSR
.DUSR
,DUSR
.DUSR
sDUSR
-DUSR
.DUSR
.DUSR
«DUSR
.DUSR
«DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR
«DUSR
.DUSR
.DUSR
.DUSR
.DUSR
.DUSR

ERFNO=
ERFNM=
ERICM=
ERILCD=
EREQF=
ERDLE=
ERFOP=
ERNUL=Z
ERUFT=
ERLLI=
ERRTHN=
ERPAR=
ERMEM=
ERSPC=
ERFIL=
ERSEL=
ERDNM=
ERTIM=
ERNOT=
ERXMT=
ERIBS=
ERSIM=
ERGTS=
ERFIU=
ERTID=
ERDTO=
ERMCA=
ERSRR=
ERCLO=
ERABT=
ERNMC=
ERXMZ=

EXCEPTIONAL STATUS CODES

101
123
184
106
110
113
115

e Ne WE NA e Ne Ne e e Ne e Ne Ne e Ne N We Me e N6 We wa we e Sa W we % ws Sa we e

ILLEGAL CHANNEL NUMBER
ILLEGAL FILE NAME

ILLEGAL SYSTEM COMMAND
ILLEGAL COMMAND FOR DEVICE
END OF FILE

A NON=EXISTENT FILE

FILE NOT OPENED

NULL ERROR

ATTEMPT T0 USE A UFT ALREADY IN USE
LINE LIMIT EXCEEDED
LRIN/LJERTN WITH NOWHERE 10 6O
PARITY ERROR ON READ LINE

NOT ENUF MEMORY AVAILABLE

OUT OF FILE SPACE

FILE READ ERROR

UNIT NOT PROPERLY SELECTED
ILLEGAL DEVICE NAME

USER SET TIME ERROR

OUT OF TCB'S

SIGNAL ADDRESS ALREADY BUSY
DEVICE ALREADY IN SYSTEM

QTY ERROR

ERROR IN USER TASK QUEUE TABLE
FILE IN USE

TASK ID ERROR

DEVICE TIMEOUT

MCA ERROR

SHORTER RECEIVE REQUEST

170 TERMINATED BY CLOSE

TASK NOT ABORTABLE

NO MCA RECEIVE REQUEST

+XMT OR ,IXMT TRANSMITTING ZERO MESSAGE !




LICENSED MATERIAL = PROPERTY OF DATA GENERAL CORPORATION
1g0e8 (MAIN

21 ; PARAMETERS FOR RTO0S MAGTAPE MODULES

ee

23 20240@1 MTBZ= 257. ; BUFFER S8IZE, WORDS

24 200377 SCwPB= 255, ; USABLE WORDS PER BUFFER

25

6 ; DCT DISPLACEMENTS

e7

z8 200813 UNUM= oCTaL ;3 UNIT NUMBER

29 202214 ADUCT= DCYDP 3 UNIT CONTROL TABLE ADDRESS s
1e 202215 DADR= DCTDC ; DATA AREA BASE ADDRESS

i1 2002016 DCNT= DCTGS ; WORD OR RECURD COUNT

12 990217 ICFRP= DCTBD ; I/0 FUNCTION ROUTINE INDIRECT POINTER
i3 7 = 1B@ + A(BRANCH TABLE ENTRY)

14 200020 CMDWD= DCTQP ; COMMAND WORD, READY FOR DOA

15 200021 TEMP= DCTOC ;7 TEMPORARY

16 202024 OPRET= DCTCC ; 1/0 OPERATION SUBR, RETURN ADDRESS
17 2e9825 .UCTX= DCTPR ; A(UCTX) => UCT INDEX

18 Q02226 .ST= DCTSC ; A(STATU) => GET STATUS SUBROUTINE
19 200827 .188U= DCTGN 3 A(ISSUE) => ISSUE COMMANDS SUBROUTINE
20 2000830 PFR= LI8SU+1 ; BIT @: POSITIONING=FOR-RETRY MODE FLAG
21 ; B1=B15: ERASE~FOR-WRITE=RETRY COUNTER
22 0202231 RTCTR= PFR+1 5 RETRY COUNTER

23 poge3z2 MODE=s RTCTR+1 ; 1=LINE, O=SEQUENTIAL

24 00233 MTDCL= MODE+i ; LENGTH OF MAG TAPE DCT

25

26 7 UCT DISPLACEMENTS

27

28 2022020 UCTPO= @ ; POSITION COUNTER (CURRENT FILE #)
29 229291 UCTST= | ; STATUS BIT LOGIC wORD

3e 200202 UCTUN= 2 ;7 UNIT NUMBER OF THIS UCT

31 ; SHORT UCT ENDS HERE

32 0Q0RR3 UCTBF= 3 ; BUFFER FIRST BYTE ADDRESS

33 200004 UCTBS= 4 ; BUFFER SIZE, BYTES

34 geee2s UCTBI= S ; BUFFER INPUT BYTE POINTER

35 200296 UCTBO= 6 ; BUFFER QUTPUT BYTE POINTER

36 P0@207 UCTBR= 7 ; BUFFER READ COUNT (BYTES TO BE READ)
37 2002019 UCTBW= 12 ; BUFFER WRITE COUNT (BYTES WRITTEN)
38 200211 UCTUP= 11 ; POINTER INTO USER DATA AREA

39 200012 UCTUC= 12 ; COUNTER GOVERNING USER DATA AREA
4e

41 7 STATUS VALUES

42

43 H 23 QUT OF SYSTEM

44 i =23 INITIALIZATION I/0 IN PROGRESS

4s H -13 IN SYSTEM

46 H +1: RELEASE 1/0 IN PROGRESS

47

48 ; DEVICE STATUS MASKS

49

52 220002 RWNDE = 182 ; DEVICE REWINDING

51 LECT



LICENSED MATERIAL « PROPERTY OF DATA GENERAL CORPORATION
Bei1e JMAIN

ADUCT 2022014 8/29
BEGIN gooeaz 3/16
CF 2egeet 4713
CMDWD 2oeo20 8/14
csi Begede 3/38
Cso Qeeeus 3/39
cepP 200241 3/37
C1C8 209023 3717
DADR @215 8712
DCCeg ouoere 1/55
DCCGN @gooeege 1742
DCCNF gggo1e 1744
DCCPO 2020001 1741
DCFFO 210020 1/53
DCFWD 2e4000 1/52
OCIDI 220004 1743
DCKEY 2020492 1746
DCLAC 2219200 1/58
DCLTU 228000 1/54
DCNAF 20021020 1747
DCNT  Qg201e6 8/11
DCPCK 2004020 1749
DCPFR 202000 1/51
DCRAT 20g2¢0 1748
DCTBO g@oe17 4/35 8/1¢e
DCTCC 2oe24 4741 8/16
DCTCD 2eoeas 4/87
DCTCH geodel 4/06
DCTCT 0202024 4/42
DCT02 200013 4726
LCTDC peov1s 4/32 8/10
OCTOP Q02014 4/31 8/09
DCTDT poeeaes 4789
DCTEX 200005 4/e8
DCTGN goo0R27 4/46 8/19
DCTIN poeote 4723
DCTIS o@geene 4/25
DCTLC gs02025 4743
DCTLK ggoety 4/24
DCTMS 2go0o0ol 4/04
DCTO ooeoce 1745
DCTOC 2@ue21 4737 8/15
PCTPR g@vees 4742 8717
bCTQL pooo13 4/32 8/e8
DCTGP Qo002 4/36 8/14
DCTGS poeeele 4/33 8/11
DCTSC aeee2s 4/45 8/18
DCTST @oeve7 4/722
DCTSV peoooe 4/83
DCTT:Y poeo22 4738
DCTT2 guaeel 4/39
DCTTC eeopie 4725
01sMl peeoll 3726
ERABT peo11e 7/32
ERCLC gae1ie 7/31
ERDLE @e2@12 7/28
ERDNM 200236 7/19
ERDTC eeouviot 7/28
ERECF geooee 7/87




e

S—

0211

ERFIL
ERFIU
ERFNM
ERFND
ERFQP
ERIBS
ERICD
ERICM
ERLLI
ERMCA
ERMEM
ERNMC
ERNOT
ERPAR
ERGTS
ERRTN
ERSEL
ERSIM
ERSPC
ERSRR
ERTID
ERTIM
ERUFT
ERXMT
ERXMZ
F4Sw

FPFA

1ACD

1ACY

1AC2

I1AC3

ICMSK
I0END
I0FRP
IPCC

IRLCGC
ISVLN
MKCAS
MKCDR
MKDKP
MKDPI
MKDPO
MKDSK
MKIPB
MKLPT
MKMC A
MKMTA
MKPLT
MKPTP
MKPTR
MKQTY
MKTTI
MKTTO
MODE

MIBZ

MTDCL
OA

OF

LICENSED MATERIAL

JMAIN

geease
peeded
Qe20dl
@pevee
228215
202245
206203
vpese2
202022
peaies’
peeece
222113
@opese
pevezy
p@vese
aegeges
200231
202047
202027
¥e2124
Q002061
2eeedl
pege21
200243
220115
2002020
Qeag4s
Qegeel
2povde
202003
gogeod
202025
020227
poea17
2000080
200226
000027
21777
201777
202617
Q8217
goe217
208717
221717
ggodle
222817
281777
202017
ggege7
201737
200003
Pe0003
Q02003
200032
280421
@@ea33
2eeele
peoece

7/17
7726
7/84
7/83
7/89
7/23
7746
7/85
7/12
7/29
7/15
7/33
7/21
7/14
7/25
7/13
7/18
7/24
7/16
7/39
7727
7/22
7/11
7/22
7/34
1724
3741
3/04
3/05
3/86
3/07
3/28
3/24
8/12
3/83
3/89
3712
6/19
6/17
6/13
6/12
6/11
6714
6/15
6/10
6/38
6/18
6/89
6/07
6/16
6/26
6/85
6/24
8/23
8/83
8/24
4/20
4/12

- PROPERTY OF DATA GENERAL CORPORATION

3710

6/18
e/14d

6/12
6/15
6/16

6729
6/19

6/08
6/17

6/06
6/@5
8/24

6/13

6/11

6/27



LICENSED MATERIAL =~ PRUPERTY OF DATA GENERAL CORPORATION
Q812 MAIN

OPRET eggeg24 8/16

PANIC @evaie 3728

PFR @gea3e 8/28@ 8/2¢
GCOND gooQ1y 5731

GLDST @ovele 5/32 5/34
GNUM 200201 5723

G0CH 2092212 5/32

GrPC Qeeeo0 5722 5/34
GPRI  aguges 5/27

GRR ge2aae 5/28

gSH @¢oees 5725

QsMS 222004 5726

QTLN 220213 5/34

GTLNK 2vgea7 5/29

QT0v 222202 5724

REB Q22006 4718

RL 2oege3s 4715

RLOC @2e202e6 3723

RGCNT 2e00282 5/25

RGLK 2pd0002 5/83

RGPTR po@o0d! 5784

RGST 2020003 5/06

RS 0e0020e 4714

RSCHD 2o@o1iu 3738

RTICTR 2002031 8rs22 8/23
KRWNDE @202022 8/50

SCHED 2pooou 3729

SCLLG @ge2ou 3745

SCWPB 0002377 8/84

SP geedye 3/36

SSACQ 177776 17302 1731
SSACY 177777 1/29 1/3¢
SSAC2 Qpeoee 1728 1729
S8CRY 177775 1731 1732
SSEAD 177774 1732 1733
SSLGT 177771 1735

SS0sP 177772 1734 1735
SSRTN 177773 1/33 1734
TAC? @oeoe! 2/36

TAC1 @oeee?2 2/37

TAC2 200003 2/38

TAC3 900004 2/39

TELN @goo1t 2/44

TEMP  @goo2l 8/15

TFP v22d16 2/49

TID geee12 2745

TKLAD @20014 2/47 2/53
TLINK 2eeo13 3729

TLN 2eee1s 2/53

TLNB Q@se2i 2/55

TLNK  ggeee7 2/42 5729
TPC goeoee 2/35 2/53 2/5%
TPRST @00ees 2/402 5727
TsL 2ege17 2/58

T80 geeeze 2/51 2/55
TSP 22e815 2/48

TSYS goeeoe 2/41

TTMP 200013 2/46




LICENSED MATERIAL = PROPERTY OF DATA GENERAL CORPORATION
2013 MAIN

TUSP @poee1e 2/43
UCTBF @@aea3 8/32
UcTBI 22892es 8734
UCTBC geeede 8/35
UCTBR peaea7 8/36
ucT8sS 2e2edd 8733
UCTBw 290elo 8/37
UCTPO pa@eae 8/28
UCTST 2020201 8729
uCTuC 82@912 8/39
UCTUN 2920822 8/32
UCTUP 2222t 8738
UNUM  2geell3 87028
usT 200U 2/05
USTAC 922@@e15 2/19
USTBR 200212 2/16
USTCH @0Ye13 2/17
USTCS 202912 2/14
USTCT 2@adi4 2/18
USTDA pBBees 2712
USTEN 2008226 2/3@a
USTES @2geee3l 2/29
USTFC 2028216 2/282
USTHU 2022927 2/13
USTIN 2020217 2/21
USTIT 2@a21! 2/15
USTNA @eraee 2/29
USTNM ggeded 2/18
USTOD 222020 2/22
USTOS 2020225 2/28
UsTP 20geela 3727 3/28
USTPC 80022022 2/06
USTPQ 802024 2/21
USTSA 202825 2711
UsSTSQ 202322 2/25
USTSS pBe@dse 2/28
USTSV 2geaat 2/23
USTXxQ 992223 2/26
USTZM Q00021 2/87
wB Qeeear 4/19
WL 202005 4/17
w8 202224 4716
XOPA 202044 3748
.CMSK @200212 3/25
.I8SU 202227 8/19 8/2@
.ST 2odece 8/18
.5YS, @aeaees 3721
.TSAV @22@15 3731
LUCTX veeges 8717



e g

S—

APPENDIX D
RTOS ASSEMBLY LANGUAGE AND FORTRAN IV PROGRAMMING
This appendix illustrates a sample real time assembly language program and de-
scribes the procedures which must be followed in order to load and execute a

FORTRAN IV program under the Real Time Operating System.

Assembly Language Illustration

The sample assembly language program, illustrated on the following pages, causes
four user tasks to compete for the use of the system console, $TTO. Each task
types a unique message on channel zero. The sequence of events in the user
program is as follows.

First, all of the task calls which will be issued within the program are referenced
externally by an . EXTN statement on line 6. Thus the following two task calls will
be issued: .PRIand .TASK. If any task call were issued which was not externally
referenced, the assembler would report an undefined symbol and the program would
not be executable. System calls, on the other hand, must not be externally refer-
enced; the SOS and RDOS assemblers recognize each system call mnemonic and
assemble the appropriate value for each mnemonic. The . TXTM 1 statement,

line 7, packs all text strings from left to right; this is always required under RTOS
and RDOS.

Upon entry to TOT, the start of the program and only entry point declared by the
.ENT statement (line 5), the teletype is opened on channel zero.

Next, the program creates three tasks and passes to each task a different displace-
ment into the series of message byte pointers which will be used when the tasks
output to the teletype. Note that each of the three tasks is created at priority 10g.
When rescheduling occurs after each task call, the default task will continue to
receive control since it is created at priority zero when the program is first
started. After creating the three tasks, the default task adjusts its priority to that
of the other three tasks so that it can compete for the teletype on an equal priority
basis (line 30).

Each of the four tasks now executes the code beginning on line 33, and outputs its
message via system call .WRS . As each task issues the system call, it becomes
suspended and control goes to the task scheduler, which raises the highest priority
ready task to the executing state. Each task remains suspended until its system call
is completed. If the error return from any system or task call is taken, the program
issues a "JMP." call, and the task is idled.

The program . END statement has the argument "TOT". This will enable the RTOS
initializer to transfer control directly to the program.

D-1



@es1 TUT

21
22
23

220201

202eY 1020436
apvp1'l1264yy
eeBR213806017
vReR3I1914G00
BRUPA1BR443]

BeARD 14208425
BBER61424425
ween71152400
aeviet177777
BvR11'0404424

200121151400
veuL1dlanvple!
veb1d41pe442y

ABv1511514up
4201042413
A00171004416

220201177777
devR1'1514up

¥Pv221034420
ven2311570v0
Gew24tu21400
“eoeb'u2dadn?
vwep2staneny7
er27'n10apn
QP31 R44y5
weaditannz7y

egu32tanunie
BRe33snenc2!
Qrvdatpnenle

WBA35 ' avrpdpn

voendotypourer
Veued7 14922124
152117
200000

VWRRAZ A2 a3
“evad3taguryisen
vweadatppyisen
dgvadleevi42n
L AT PR E Y-
QAradl 1 ad21u1
451513
bw2unel

MACRO REV @2

14:902:32 ©2/25/74
FTYPEGUT TEST WITH MULTITASKING

STITL TOY
JENT 107
+EXTN PRI
STXTM o
+NREL

+TASK

TOT: LDa @ .T70
SuB 1 1
+8YSTY
«OPEN @
JSR ERR

LDA 2 PRIOR
LUA 1 NEWTASK
SuB 2 2

+« TASK

JSR ERR

INC 2 2
«TASK
JSR EwRR

INC 2 2
«TASK
JSR ERR

'PRI
InC 2 2

L: LDaA 3 ,MESS
ADD 2 3

LA 2 ¢ 3
LUA 1 COUNT
«SYST

«WRS @

JSR ERR

JMP L

PRIOR: {#
NEWTASK: L
COUNT: 8,

ERR: JMP

JTTUS o122
«TXT /78T7T0/

+MESS: !

MESS@*2
MESS w2
MESS2w2
MESS3w2

MESS?E  ,TXT /TASK 1<15><i{2>/

Sample Assembly Language Program




vz TOUT

41 weo4s12

@e ABBRGT

23 200541952141 MESSIY GTXT /TASe Z2215><123/
@24 451513

a5 Wenree

)<} whb4al?

a7 AAHRAR

e Ylebitvdelul MESSZ: 2TXT 7TASK S<]15><12>/
2y 251513

19 ARHB63

11 AR6412

12 LRERRE

13 Boebo'ab2iel MESS3T  LTXT /TASK 4<15»><12>/
14 ¢51513

19 A2uod

16 wRo412

17 LBy

13

19 dENU TOT

-

Sample Assembly Language Program (Continued)




2uBS TUI

COUNT puvvdal 1738 1744
ERR avgedn! 1714 17290 1/24 1/28 1/39 1746
L Aevp22! 1738 1/74¢ 1748

ML3nP vugsdl! 1752 1758

MESOL ¢224540 1755 2743

MEB82 apagnl! 1756 2/08

MEBS3 Cuvubs! 1757 2/13

NEWTA #vdgdd 1717 1748

PrIuk guiedz! 1/16 1742

Tyt Parvve T En tr04 1725 1719 2/19

JMESS pievedz! 1733 1758

PHI  Puav2et xn i/40 1738

« TASK 2udivit! Xn 1706 1719 1723 1727

JIT0 vveds? 17419 1748

Sample Assembly Language Program (Continued)




s

The relocatable binary produced by assembling this program can be loaded by
either the stand-alone extended relocatable loader, the SOS loader, or the RDOS
loader. In this illustration we show the dialogue that ensues when the program is
loaded by the stand-alone loader.

IR

After the loader is loaded, it self-starts and outputs the message "SAFE= .
A carriage return response causes the top 200 locations to be saved, preserving

the binary loader. After this, the star prompt is output. The program relocat-
able binary (TOT), RTOSGEN module, and two RTOS libraries are then loaded.

The RTOS module loaded with this program specifies 5 user tasks. Four user

tasks are needed, and a system task is also required since use of the peripheral
device is simultaneously requested by more than one user task. At the termination
of loading, (*8), the initializer starting address, 376, is placed in the data switches.
RESET, is then pressed, followed by START. The program is initialized and begins
at entry TOT, outputting the task messages until STOP is pressed.

SAFE =
*2 TOT
*2 NRTOS
*2

*2
*BTASK 1
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK

QN == B RN = 5 WM s >N =D N D> WM

Load Dialogue and Program Output

D-5




Real Time FORTRAN 1V Programming

Since RTOS is a compatible subset of RDOS, RTOS will support a subset of

DGC Real Time FORTRAN IV. To write a Real Time (RT) FORTRAN IV program
for use with RTOS, you may use either the RDOS FORTRAN IV compiler or the
12K SOS FORTRAN 1V compiler. Operating procedures for using these compilers
are documented in the FORTRAN IV User's Manual, 093-000053, Appendix D.

The only restriction on use of DGC RT FORTRAN IV under RTOS is that only those
real time calls may be used which have corresponding system and task calls imple-
mented in RTOS.

Having produced one or more FORTRAN IV relocatable binaries, you use relocatable
load procedures which are similar to those documented in this manual, Appendix B,
for assembly language program binaries, The only addition to these procedures

is the loading of the FORTRAN run time libraries, RTOSFMT. LB, FORTI.LB,
FORT2.LB, FORT3. LB and the appropriate integer multiply /divide library. Thus
the relocatable load sequence using either the stand-alone extended relocatable
loader, the SOS relocatable loader, or the RDOS relocatable loader is as follows:

1. FORTRAN relocatable binaries (the program proper)

2. RTOS module produced by RTOSGEN.

3. RTOSFMT. LB (the RTOS real time FORTRAN IV run time library).
4. FORTI.LB

5. FORT2,LB

6. FORT3.LB

7. An integer multiply/divide library

8. RTOSI1. LB

9., RTOS2.L1B
10, Other RTOS libraries as required (RTOS MTA. LB, RTOS CAS. LB,

RTOS DSK. LB, or RTOS DKP. LB)
After relocatable loading is complete, the FORTRAN program is started just as

any other RTOS program is started. Details for executing an RTOS program are
given in Appendix B.

D-6




e

T

APPENDIX E

RTOS Inter-revision Incompatibilities

Task call .REC now readies the highest priority task which has attempted to
receive a common task message.

The User Status Table has increased in size by two words, and TCBs are from
1 to 5 words longer.

Single task programs running in an ECLIPSE system load USP into AC3 upon
return from system and task calls only if the task scheduler used is TMIN.
Multitask ECLIPSE programs and single task programs using task scheduler
BTMIN load CSP (the frame pointer) into AC3 upon return from system and task
calls.

Issuance of RDOS .SYSTM calls .CREAT, .CRAND, .CCONT, .DELET, or
.RENAME will cause the error return to be taken with crror ERICM signaled
("illegal system command”). Formerly these calls were executed as no-ops
taking the normal return.




o
o

. ABORT 3-4, 6-5
JAKILL 1-2, 3-4f%
.APPEND 2-2f, 2-6f

LARDY 1-2, 3-5

ASCIi codes 2-14f

assembly language illustration D-1ff

. ASUSP 1-2, 3-5f

asynchronous data communications mux (see QTY)

BEGIN 6-1f

cassette tape
data format 1-8ff
initialization (see .INIT) 1-8
1/0 (see .MTOPD, .MTDIO)
CBOOT 1-17, B-18f, B-22
channel 1-4 (see .GCHN)
characteristics inhibit mask 2-4f
.CHTB 6-2, 6-11f
clock and calendar commands 2-26ff
close a file or device (see .CLOSE, .RLSE, or
.RESET)
.CLOSE 2-2f, 2-7, 3-2
.CMSK 6-2f
.COMM TASK 1-16
command summary A-1ff
compatibility with RDOS 1-15ff
console interrupts (see . WCHAR)
CTCB 6-2f

.DELAY 1-2, 2-2, 2-26

device control table (DCT) 4-1f, B-8, C-5

device file tables (see . DTBL, .PTBL, .QTBL,
.MCTB)

device support under RTOS 1-5f

direct block I/O 2-3, 2-10, 2-16

disk file structure 1-14f, 2-1

DISMISS 6-2f

.DQTSK 3-6

.DTBL 6-2, 6-6f

.DUCLK 2-2, 2-29

ECLIPSE systems 1-5, 6-3, 6-5f, B-9, B-17
error message summary A-7f
.ERTN 2-2, 2-6

e

*#"'f" means "and the following page"’;
**ff” means "and the following pages’.

INDEX

file and 1/0 system commands 2-1ff
formatting a disk B-1

FORTRAN IV D-06

free format 1/O 2-3, 2-8f, 2-18ff

.GCHAR 2-2, 2-22

.GCHN 2-2, 2-6

.GDAY 2-2, 2-27

generating an RTOS system Appendix B
.GHRZ 2-2, 2-28f

.GMCA 2-2, 5-2f

.GTOD 2-2, 2-28

high priority interrupt devices 4-1, 4-5f, 6-10f, B-8
JHINT 6-2, 6-10f

HIPBOOT 1-17, B-15f

HMA 2-24f

Hollerith - ASCII translation 2-14f

JIDEF 2-1f, 4-2f, 4-5, B-8

idle the system 1-2, 2-25

LIDST 3-6f

incompatibilities, source level E-1

JNIT 1-8, 2-2f, 2-8

interrupt table (. ITBL) 4-1, 4-5f, 6-2, 6-11

1/0 modes (see direct block, line, sequential,
free format)

LINTP 6-1

IOEND 6-2f

JRMV 2-1f, 4-3f

JIXMT 2-29, 3-7f, 4-2, 4-6

.KILAD 3-8, 6-6
.KILL 3-9

line I/O 2-3
loading an RTOS program B-13ff, D-5

magnetic tape
data format 1-13, 1-15
initializing (see .INIT) 1-8
1/0 (see . MTOPD, .MTDIO)

MCABOOT B-20

.MCTB 6-6

.MEM 2-2, 2-24

INDEX - 1



.MEMI 2-2, 2-24f

memory size commands 2-23ff

.MTDIO 2-2, 2-8, 2-18ff

.MTOPD 1-13, 2-2f, 2-8f

Multiprocessor Communications Adapter (MCA)
1-8, 2-4f, 2-17
Chapter 5,6-6,B-7,B-10

NMAX 1-3, 2-23f
NOVA systems 1-5, 6-3, 6-5, B-9, B-17
no-ops 1-14

.OPEN 2-2f, 2-4f

panics 6-3
.PCHAR 2-2, 2-22
power fail 4-4f, B-8
PRI 3-9, D-1f
.PTBL 6-2, 6-6f

.QTBL 6-2, 6-6f
.QTSK 3-9ff
QTY 1-13f, 6-2, 6-6f

.RDB 1-4, 2-2f, 2-10

.RDL 2-2f, 2-11f

.RDS 2-2f, 2-12f

.REC 3-11, 4-2

.RESET 2-2f, 2-7

RLOC 6-2f

.RLSE 1-8, 2-2f, 2-9f

RSCHED 6-2f

.RTN 2-2, 2-25

RTOS
device support 1-6
organization Chapter 6
parameters 1-4, Appendix C

RTOSGEN 2-1, 4-1f, 6-1, Appendix B, D-5

.RUCLK 2-2, 2-30

SCHED 6-2f

.SDAY 2-2, 2-27

sequential 1I/0 2-3

. SMSK 3-1, 4-3

standard device table (see .CHTB)
.STOD 2-2, 2-28

.SUsp 1-2, 3-11f

.SYS. 6-1f

System call
descriptions Chapter 2, Chapter 4
format 1-3ff, 1-9f
equivalence 1-3, 1-5
list 2-2
system generation (see RTOSGEN)

Task
Concepts 1-1, 3-1ff
format 1-3ff, 1-15f
identification (see . TIDR, .TIDK, .TIDP, .TIDS,
. TASK)
scheduler 1-2f
states 1-2
status (see .IDST)
synchronization 1-3
.TASK 1-2, 3-12, D-1
TBOOT 1-17, B-18f
TCB 1-1ff, Chapter 3, 6-1f, 6-5
Teletype commands 2-22f
.TIDK 1-2, 3-12f
. TIDP 3-1, 3-13f
.TIDR 1-2, 3-13f
.TIDS 1-2, 3-14
TLINK 6-2f
.TSAVE 6-2f

LUCEX 2-30, 3-1

UCT 6-9

JUIEX 3-1, 4-2f

.UPEX 3-1, 4-5

User File Pointers Table (.UFPT) 6-2, 6-6
User Interrupts Chapter 4

User Status Table (UST) 6-2, 6-4

UsP 6-2f

USTP 6-2

.WCHAR 2-Z, 2-23, 6-1
.WRB 1-4, 2-2f, 2-16
.WRL 2-2f, 2-16f
.WRS 2-2f, 2-17f

. XMT 1-3, 3-14f
JKMTW 1-3, 3-14f

INDEX - 2




e S e
i :

ata‘ ;e PROGRAMMING DOCUMENTATION
D neral REMARKS FORM

Document Title Document No. Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:

Name Title Date

Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004



FOLD DOWN FIRST FOLD DOWN

e e e e e e W om MR e s M S W e W e e S M B M B e G MR S MR B G A AN S G e MR S MR S e e e Gm e e e R R e S M M W SR M e e M MR MR G G MR N T M e e R M S M M R G e e T ee e W N S e e me S e e e e e e

FIRST
CLASS
PERMIT

Ne. 26

Southboro
Mass. 01772

BUSINESS REPLY MAIL

No Postage Necessary f Mavled in The Unoed States

Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

e NS e T e e e B8 e e WM A G e e e M e e W e S A G A M e N S Gm e R e e e S e S e W e A e e e e e e e be M B SR R m o e s e e e e e e e o e e e e . A - o o o 8

FOLD UP SECOND FOLD UP

STAPLE



	Cover
	i
	ii
	iii
	iv
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	5-1
	5-2
	5-3
	5-4
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	E-1
	Index - 1
	Index - 2



